Solomon Practice Paper

Pure Mathematics 5E

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	6	
3	9	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[4]

1.	A student without a calculator must find the value of x given that $\operatorname{arctanh}(x) = \ln(3)$. With clear working, show how the student could find x and state the value he should obtain.

2.

f(\dot{x}) =	sin	(2x)	$-x\cosh^2($	x).

(a)	Find $f'(x)$.	[3]
(b)	Show that the curve with equation $y = f(x)$ has a stationary point in the interval $0.3 < x < 0.4$.	[3]
		Total: 6
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • • •		
• • •		
• • • •		
• • •		
• • • •		

[9]

3.	Given that $\frac{2\pi}{3}$
	Given that $\int_0^{\frac{2\pi}{3}} \frac{1}{5 + 4\cos(x)} \mathrm{d}x = a\pi, \qquad a \in \mathbb{Q},$
	use the substitution $t = \tan\left(\frac{1}{2}x\right)$ to find the value of a .

[9]

4.	The curve C has equation $\langle x \rangle$
	$y = a \cosh\left(\frac{x}{a}\right),$
	where a is a positive constant.
	The area bounded by the curve C , the x -axis and the lines $x=-a$ and $x=a$ is rotated through 2π radians about the x -axis.
	Show that the curved surface area of the solid generated is $\pi a^2(\sinh(2) + 2)$.

[9]

[2]

11

5.	The intrinsic equation of the curve C is $s = 2\psi$.	
	Given that s is measured from the origin,	
	(a) find a Cartesian equation of C ,	
	(b) sketch C .	
		Гotal:
		lotai.

6.	(a) Using the definitions of hyperbolic functions in terms of exponential functions, prove that	[4]
	$\cosh(x+y) \equiv \cosh(x)\cosh(y) + \sinh(x)\sinh(y).$	
	Given that	
	$5\cosh(x) + 4\sinh(x) \equiv R\cosh(x+\alpha),$	
	find	
	(b) the value of R ,	[3]
	(c) the value of α , giving your answer in terms of natural logarithms.	[3]
	(d) Hence, or otherwise, state the minimum value of $5\cosh(x) + 4\sinh(x)$.	[1]
	Total:	
	Total.	11

[5]

[6]

11

7.

$$I_n = \int_0^1 x^n e^{x^2} dx, \quad n \ge 0.$$

(a) Show that

 $I_n = \frac{1}{2}e - \frac{1}{2}(n-1)I_{n-2}, \quad n \ge 2.$

(b) Hence find

$$I_n = \int_0^1 x^5 e^{x^2} \, \mathrm{d}x,$$

giving your answer in terms of e.

Tota	<u>l</u> :

8.	The line with equation $y = mx + c$ is a tangent to the parabola with equation $y^2 = 8x$.	
	(a) Show that $mc = 2$.	[5]
	The lines l_1 and l_2 are tangents to both the parabola with equation $y^2 = 8x$ and the circle with equation $x^2 + y^2 = 2$.	
	(b) Find the equations of l_1 and l_2 .	[9]
	Tota	al: 14
		<i>x</i> 1. 11