Solomon Practice Paper

Pure Mathematics 5D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	11	
4	12	
5	13	
6	13	
7	16	
Total:	75	

How I can achieve better:

•

•

•

1.

$$y = \frac{\operatorname{cosech}(x)}{x^2 + 1}.$$

(a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[4]
(b) Find the value of $\frac{dy}{dx}$ when $x = 0.5$, giving your answer to 2 decimal places.	[1]
	Total: 5

Last updated: May 5, 2023

[5]

2.	A curve has intrinsic coordinates (s, ψ) and radius of curvature ρ .
	Given that $\rho = 2(s+a)$, where a is constant, show that the intrinsic equation of the curve can
	be written in the form
	$s = Ae^{2\psi} - a,$
	where A is constant.

3.	(a) Prove that	[5]
	$\sinh(3x) \equiv 4\sinh^3(x) + 3\sinh(x).$	
	(b) Hence, or otherwise, solve the equation	[6]
	$\sinh(3x) = 7\sinh^2(x),$	
	giving your answers in terms of natural logarithms where appropriate.	
	Total:	: 11

Last updated: May 5, 2023

4. ((a) Find $\int \frac{1}{\sqrt{9-4x^2}} \mathrm{d}x$.	[3]
	0 1 0	

(b) Find
$$\int \frac{1-2x}{\sqrt{9-4x^2}} \, \mathrm{d}x$$
. [3]

$$\sqrt{9-4x^2}\frac{\mathrm{d}y}{\mathrm{d}x} = y(1-2x),$$

$\sqrt{9-4x^2}\frac{d}{dx} = y(1-2x),$			
given that $y = 1$ when $x = 0$.			
	Total: 1		

5.	The curve C has equation $y^2 = 4ax$, where a is a positive constant.	[4]
	(a) Show that an equation of the tangent to C at the point $P(ap^2, 2ap), p \neq 0$, is	[4]
	$yp = x + ap^2.$	
	The point $Q(aq^2, 2aq)$, is on C where $q \neq 0$ and $p \neq q$. The chord PQ passes through the focus of C . Show that	
	(b) $pq = -1$,	[5]
	(c) the tangent to C at P and the tangent to C at Q meet on the directrix of C .	[4]
		otal: 13
		.0tar. 15

6.

$$I_n = \int_0^{\frac{\pi}{4}} \sec^n(x) \, \mathrm{d}x, \quad n \ge 0.$$

(a) Show that		[7]
	$(n-1)I - \sqrt{2}^{n-2} + (n-2)I$ $n > 2$	

(b) Hence find the exact value of I_3 , giving your answer in terms of natural logarithms.		[6]
	Total:	13
	•	
	•	
	•	
	•	
	•	

. u	rage volv	_	
7.	(a) Show that $\int \sqrt{a^2+x^2} \mathrm{d}x = \frac{x}{2} \sqrt{a^2+x^2} + \frac{a^2}{2} \operatorname{arcsinh}\left(\frac{x}{a}\right) + c.$		[9]
	The parametric equations of the curve C are		
	$x = 2t$, and $y = t^2$, $0 \le t \le 3$.		
	(b) Show that the length of C is given by		[4]
	$2\int_0^2 \sqrt{1+t^2} \mathrm{d}t.$		
	(c) Find the length of C .		[3]
		Total:	16

