Solomon Practice Paper Pure Mathematics 5B Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 7 | | | 2 | 8 | | | 3 | 9 | | | 4 | 11 | | | 5 | 12 | | | 6 | 13 | | | 7 | 15 | | | Total: | 75 | | ## How I can achieve better: • • • [7] | L. | Given that $y\arccos(x) - \frac{x}{\pi}e^{2x} - 1 = 0,$ | |----|---| | | find the value of at the point where $x = 0$, giving your answer in terms of π . | [8] | 2. | | |----|--| | | $f(x) = 5\cosh(x) + 3\sinh(x).$ | | | The minimum value of $f(x)$ occurs at the point $(p \ln(q), r)$ where p, q and r are integers. | | | Find the values of p, q and r . | 3. | The line $y = mx + c$ is a tangent to the rectangular hyperbola with equation $xy = -9$. | | |----|---|----------| | | (a) Show that $c = \pm 6\sqrt{m}$. | [4] | | | (b) Hence, or otherwise, find the equations of the tangents from the point $(4, -2)$ to the rectangular hyperbola $xy = -9$. | [5] | | | | Total: 9 | [11] | 4. | The curve C is defined by | |----|--| | | $y^2 = x, x \ge 0, y \ge 0.$ | | | The region between C , the x -axis and the line $x=1$ is rotated through 2π about the x -axis. | | | Show that the area of the surface generated is | | | π ($-$) | | | $ rac{\pi}{6}\left(5\sqrt{5}-1 ight)$. | 5. | (a) Using the definition of $\cosh(x)$ in terms of exponential functions, express $\operatorname{sech}(x)$ in terms of e^x and e^{-x} . | [1] | |----|--|---------| | | (b) Sketch the graph of $y = \operatorname{sech}(x)$. | [2] | | | (c) Show that | [4] | | | $\int \operatorname{sech}(x) \mathrm{d}x = 2 \arctan\left(\mathrm{e}^x\right) + c.$ | | | | The curve C has equation $y = \operatorname{sech}(x)$. The region between C , the x -axis and the lines $x = -a$ and $x = a$, where a is a positive constant, is rotated through 2π about the x -axis. | | | | (d) Find the volume of revolution of the solid generated. | [4] | | | (e) Find the limit of the volume of revolution as $a \to \infty$. | [1] | | | То | tal: 12 | 6. $$I_n \int_0^{\sqrt{2}} \left(2 - x^2\right)^n \, \mathrm{d}x, \quad n \ge 0.$$ | a) Snow that | | | |--------------|---------------------------------|-----------| | | 4n | | | | $I_n = \frac{4n}{2n+1}I_{n-1},$ | $n \ge 1$ | | | 2n+1 | | [4] 13 | 2n+1 | | |--|-------| | (b) Hence evaluate I_3 , leaving your answer in surd form. | | | | Total | [4] [4] [7] 15 7. The curve C has intrinsic equation $$s = \ln\left(\tan\left(\frac{1}{2}\psi\right)\right), \quad 0 < \psi \le \frac{\pi}{2}.$$ | (a) Show that radius of curvature of C is given by $\rho \csc(\psi)$. | |--| | Given that $y = \psi = \frac{\pi}{2}$ when $x = 0$, | | (b) show that $y = \psi$, | | (c) use integration to show that a Cartesian equation of C is $x = \ln(\sin(y))$. | | Total: | | Total. |