Solomon Practice Paper

Pure Mathematics 5B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	8	
3	9	
4	11	
5	12	
6	13	
7	15	
Total:	75	

How I can achieve better:

•

•

•

[7]

L.	Given that $y\arccos(x) - \frac{x}{\pi}e^{2x} - 1 = 0,$
	find the value of at the point where $x = 0$, giving your answer in terms of π .

[8]

2.	
	$f(x) = 5\cosh(x) + 3\sinh(x).$
	The minimum value of $f(x)$ occurs at the point $(p \ln(q), r)$ where p, q and r are integers.
	Find the values of p, q and r .

3.	The line $y = mx + c$ is a tangent to the rectangular hyperbola with equation $xy = -9$.	
	(a) Show that $c = \pm 6\sqrt{m}$.	[4]
	(b) Hence, or otherwise, find the equations of the tangents from the point $(4, -2)$ to the rectangular hyperbola $xy = -9$.	[5]
		Total: 9

[11]

4.	The curve C is defined by
	$y^2 = x, x \ge 0, y \ge 0.$
	The region between C , the x -axis and the line $x=1$ is rotated through 2π about the x -axis.
	Show that the area of the surface generated is
	π ($-$)
	$rac{\pi}{6}\left(5\sqrt{5}-1 ight)$.

5.	(a) Using the definition of $\cosh(x)$ in terms of exponential functions, express $\operatorname{sech}(x)$ in terms of e^x and e^{-x} .	[1]
	(b) Sketch the graph of $y = \operatorname{sech}(x)$.	[2]
	(c) Show that	[4]
	$\int \operatorname{sech}(x) \mathrm{d}x = 2 \arctan\left(\mathrm{e}^x\right) + c.$	
	The curve C has equation $y = \operatorname{sech}(x)$. The region between C , the x -axis and the lines $x = -a$ and $x = a$, where a is a positive constant, is rotated through 2π about the x -axis.	
	(d) Find the volume of revolution of the solid generated.	[4]
	(e) Find the limit of the volume of revolution as $a \to \infty$.	[1]
	То	tal: 12

6.

$$I_n \int_0^{\sqrt{2}} \left(2 - x^2\right)^n \, \mathrm{d}x, \quad n \ge 0.$$

a) Snow that		
	4n	
	$I_n = \frac{4n}{2n+1}I_{n-1},$	$n \ge 1$
	2n+1	

[4]

13

2n+1	
(b) Hence evaluate I_3 , leaving your answer in surd form.	
	Total

[4]

[4]

[7]

15

7. The curve C has intrinsic equation

$$s = \ln\left(\tan\left(\frac{1}{2}\psi\right)\right), \quad 0 < \psi \le \frac{\pi}{2}.$$

(a) Show that radius of curvature of C is given by $\rho \csc(\psi)$.
Given that $y = \psi = \frac{\pi}{2}$ when $x = 0$,
(b) show that $y = \psi$,
(c) use integration to show that a Cartesian equation of C is $x = \ln(\sin(y))$.
Total:
Total.

