Solomon Practice Paper

Pure Mathematics 5A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	9	
4	10	
5	10	
6	10	
7	11	
8	12	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	A curve has the equation
	$y = x + 2x^2 + 5x^3.$
	Show that the radius of curvature of the curve at the origin is $\frac{1}{\sqrt{2}}$.

[8]

2. Show that	$\int_0^{\ln(2)} x \operatorname{sech}^2(x) \mathrm{d}x = \frac{3}{5} \ln(2) - \ln\left(\frac{5}{4}\right).$

3.	(a) Prove that $\frac{\mathrm{d}}{\mathrm{d}x}\arcsin(2x) = \frac{2}{\sqrt{1-4x^2}}.$	[3
	Given that $f(x) = 2x \arcsin(2x) + \sqrt{1 - 4x^2},$	
	(b) Show that $f''(x) \left[f(x) - x f'(x) \right] = 4.$	[6]
		Total: 9

4. The parametric coordinates of the curve C shown above are

$$x = t^2$$
, and $y = t - \frac{1}{3}t^3$, $0 \le t \le a$.

The curve C meets the x-axis at the point A where t=a.

(a) Find the value of a.

[2]

[8]

The curve C is rotated through 2π about Ox.

(b) Find the surface area of the solid generated.

Total: 10

5.	(a) Using the definitions of $\cosh(x)$ and $\sinh(x)$ in terms of e^x and e^{-x} , prove that	[3
	$\cosh(2x) = 2\cosh^2(x) - 1.$	
	(b) Solve the equation $2\cosh(2x) = 13\cosh(x) - 12,$	[7
	giving your answers in terms of natural logarithms.	
		Total: 1
		10001. 1

Last updated: May 5, 2023

6.

$$x^{2} - 10x + 41 \equiv (x+a)^{2} + b.$$

(a) Find the values of the constants a and b . (b) Show that $\int_5^9 \frac{x}{\sqrt{x^2-10x+41}} \mathrm{d}x = p\left(\sqrt{2}-1\right) + q\ln(r),$ stating your values of p,q and r .	[2] [8]
	otal: 10

,	7	
	1	•

$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos(x) \, \mathrm{d}x \quad n \ge 0.$$

a) Prove that		
,	$I_n = \left(\frac{\pi}{2}\right) - n(n-1)I_{n-2},$	$n \ge 2$

[5]

$\sim (2)$	
(b) Hence find the value of I_4 , giving your answer in terms of π .	[6]
	Total: 11
	•
	•
	,
	•
	•

- 8. The rectangular hyperbola C has equation $xy = c^2$, where c is a positive constant.
 - (a) Show that an equation of the tangent to C at the point $P\left(cp, \frac{c}{p}\right)$ is

[4]

[5]

$$x + yp^2 = 2cp.$$

The tangent to C at P meets the x-axis at the point X.

The point Q on C has coordinates $\left(cq, \frac{c}{q}\right), q \neq p$ such that QX is parallel to the y-axis.

(b) Show that $q = 2p$.	[3]
--------------------------	-----

M is the mid-point of PQ.

(c) Find, in Cartesian form, an equation of the focus of M as p varies.	
	Total: 12
	ı
	•
	•
	,
	,
	,

Last updated: May 5, 2023

