Solomon Practice Paper

Pure Mathematics 4H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

•

•

•

[2]

1.		[2]
	(b) Hence find $\sum_{r=1}^{n} (r \times r!)$.	[4]
	$r{=}1$	Total: 6

2.	(a) Given that $y = \frac{2x}{x^2 + 9},$	[5]
	express x in terms of y .	
		[6]
	(b) Hence prove that for all real values of x	[3]
	$-\frac{1}{a} \le \frac{2x}{x^2 + 9} \le \frac{1}{a},$	
	where a is a positive integer which you should find.	
		Total: 8
		Total. 6

[9]

3.	Find the general solution of the differential equation
	$x\frac{\mathrm{d}y}{\mathrm{d}x} + xy = 1 - y,$
	giving your answer in the form $y = f(x)$.

4. Figure shows part of the curves $y = x^2$ and $y = \frac{3}{3x - 2}$.

The curves meet at the point with x-coordinate α .

(a) Find the integer N such that $\frac{N}{10} < \alpha < \frac{N+1}{10}$.

[4]

Total: 9

(b) Use interval bisection on the interval found in part (a) to find the value of α correct to 2 decimal places. [5]

 	•••••	

5	Given	that
υ.	Given	ша

$$f(z) \equiv z^4 - 4z^3 + kz^2 - 4z + 13,$$

where κ is a real	constant, and that	z=1 is a solution	of the equation $I(z) = 0$,

where k is a real constant, and that $z = 1$ is a solution of the equation $I(z) = 0$,	
(a) show that $k = 14$,	[3]
(b) find all solutions of the equation $f(z) = 0$.	[7]
	Total: 10

6. The shape of a company logo is to be the region enclosed by the curve with polar equation

$$r^2 = a^2 \sin(2\theta), \quad 0 \le \theta \le \frac{\pi}{2}.$$

A sign in the shape of the logo is to be made by cutting the area enclosed by the curve from a square sheet of metal OPQR where O is the pole and R lies on the initial line, $\theta = 0$, as shown in Figure.

PQ and QR are tangents to the curve, parallel and perpendicular to the initial line respectively, at the points A and B on the curve.

(a) Find the value of θ at the point A.	[7]
(b) Show that the area of $OPQR$ is $\frac{3\sqrt{3}}{8}a^2$.	[3]
(c) Find the area of the metal sheet which is not used.	[5]
	Total: 15

7. Given that $x = ke^{-t}$ satisfies the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 8\mathrm{e}^{-t},$$

- (a) find the value of k. [3]
- (b) Hence find the solution of the differential equation for which x = 1 and $\frac{dx}{dt} = 3$ at t = 0. [8]

	$\mathrm{d}t$	
The maximum value of x occurs when $t = T$.		
(c) Show that the maximum value of x is $\frac{40}{27}$ and find	the value of T .	[7]
21		Total: 18
		•
		•
		•
		•
• • • • • • • • • • • • • • • • • • • •		•
		•
		·
		. •
		•
		. •
		•
		•
		. •
		. •
		·
		•
		•
		. •
		. •
		. •
		. •

