Solomon Practice Paper

Pure Mathematics 4F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	7	
4	7	
5	10	
6	10	
7	14	
8	16	
Total:	75	

How I can achieve better:

•

•

•



[4]

1. Figure shows the curve with polar equation

$$r = a\theta, \quad 0 \le \theta < 2\pi, \quad a > 0.$$

This the area of the finite region bounded by the curve and the initial line $v=0$.

[7]

2. F	2. Find the set of values of x for which			
	$\frac{(x-1)(x+2)}{x+4} > 4.$			
• •				
• •				
• •				
• •				
• •				
• •				
•				
• •				

3.

$$f(x) = 3x^5 - 7x^2 + 3.$$

$f(x) = 3x^5 - 7x^2 + 3.$	
(a) Show that there is a root, α , of the equation $f(x) = 0$ in the interval $[0, 1]$.	[2]
(b) Use linear interpolation once on the interval $[0,1]$ to estimate the value of α .	[2]
There is another root, β , of the equation $f(x) = 0$ close to -0.62 .	
(c) Use the Newton-Raphson method once to obtain a second approximation to β , giving your answer correct to 3 decimal places.	[3]
	Total: 7

Last updated: May 5, 2023

4. The Cartesian equation of the curve C is

$$(x^2 + y^2)^2 = a^2(x^2 - y^2).$$

(a) Show that, in polar coordinates, the equation of curve C can be written as			
r	$r^2 = a^2 \cos(2\theta).$		

(b) Sketch the curve C for $0 \le \theta < 2\pi$.	[3]
	Total: 7

Last updated: May 5, 2023

5.	(a) Show that the substitution $y = \frac{1}{u}$ transforms the differential equation	[3]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} - xy^2 = 0 \tag{(\star)}$	
	into the differential equation $\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{u}{x} + x = 0.$	
	(b) Hence find the solution of differential equation \star such that $y=1$ when $x=1$, giving your answer in the form $y=\mathrm{f}(x)$.	[7]
	ŗ	Total: 10

			2n					
6.	(a)	Find	\sum	r^2	in	terms	of	n
			r=n+1					

[4]

(b) Hence, or otherwise, show that

[6]

Total: 10

$$4 \le \frac{\sum_{r=n+1}^{2n} r^2}{\sum_{r=1}^{n} r^2} < 7$$

for all positive integer values of n.

• • • • • • • • • • • • • • • • • • • •	 	
	 •	

• • • • • • • • • • • • • • • • • • • •	

.....

7.	A particle moves along the x -axis such that at time t its x -coordinate satisfies the differential		
	equation $d^2 m = d^2 m$		
	$2\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 5\frac{\mathrm{d}x}{\mathrm{d}t} - 3x = 20\sin(t).$		
	(a) Find the general solution of this differential equation.	[10	
	Initially the particle is at $x = 5$.		
	Given that the particle's x-coordinate remains finite as $t \to \infty$,		
		[4	
	(b) find an expression for x in terms of t .	[4	
	Т	Total: 1	

Total: 16

8. The complex numbers z_1 and z_2 are given by

$$z_1 = \frac{1+\mathbf{i}}{1-\mathbf{i}}$$
, and $z_2 = \frac{\sqrt{2}}{1-\mathbf{i}}$.

(a)	Find z_1 in the form $a + \mathbf{i}b$ where a and b are real.	[2]
(b)	Write down the modulus and argument of z_1 .	[2]

(c) Find the modulus and argument of
$$z_2$$
. [4]

` '		enting z_1, z_2 and $z_1 + z_2$ on the same Argand diagram, and hence find	[8]
	the exact value of tan ($\left(\frac{3\pi}{8}\right)$.	

••••••••••••••••••••••••••••••	
••••••••••••••••••••••••••••••	

