Solomon Practice Paper

Pure Mathematics 4C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	9	
3	9	
4	10	
5	12	
6	13	
7	16	
Total:	75	

How I can achieve better:

•

•

•

[6]

1.	. Find the set of values of x for which					
	x-2 > 2 x+1 .					

2.	(a) By using the substitution $y=vx$, or otherwise, find the general solution of the differential equation $xy=\frac{\mathrm{d}y}{\mathrm{d}x}=x^2+y^2.$	[7]
	(b) Given also that $y = 2$ when $x = 1$, show that for $x > 0$	[2]
		[]
	$y^2 = 2x^2 \left(\ln(x) + 2 \right).$	
		Total: 9
		10tar. 9

3.	(a) Find the sum of the series	[3]
	$2^3 + 4^3 + 6^3 + \ldots + (2n)^3$,	
	giving your answer in a simplified form.	
	(b) Hence, or otherwise, show that the sum of the series	[6]
	$1^3 - 2^3 + 3^3 - 4^3 + \ldots + (2n-1)^3 - (2n)^3$	
	is $-n^2(4n+3)$.	
	15-h $(4h+5)$.	TI 1 . 0
		Total: 9

[10]

_	Find the general solution of the differential equation $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}-6\frac{\mathrm{d}y}{\mathrm{d}x}+9y=2\mathrm{e}^{3x}.$	

[7]

5. Figure shows part of the curve y = f(x) where

$$f(x) \equiv 2x - \tan(x), \quad x \in \mathbb{R}, \quad 0 \le x < \frac{\pi}{2}.$$

- (a) Show that there is a root, α , of the equation f(x) = 0 in the interval (1, 1.5).
- (b) Use the Newton-Raphson method with an initial value of x=1.25 to find α correct to 2 decimal places and justify the accuracy of your answer.
- (c) Explain with the aid of a diagram why the Newton-Raphson method fails if an initial value of x = 0.75 is used when trying to find α .

Total: 12
 • •
 • •
 • •

6	The	complex	numbers	7.	and	11)	are	defined	such	that
υ.	1110	COMPICA	numbers	~	and	ω	arc	ucinicu	Such	unat

$$3z + w = 14$$
$$z - \mathbf{i}w = 15 - 9\mathbf{i}$$

(a) Show that $z = 3 - 4i$ and find w in the form $a + \mathbf{i}b$, where a and b are real numbers.	[6]
(b) Find the square roots of z in the form $c + id$, where c and d are real numbers.	[7]
T	otal: 13
•••••••••••••••••••••••••••••••	

Last updated: May 5, 2023

7. Figure shows the curves with polar equations

$$r = 4\sin(2\theta), \quad 0 \le \theta \le \frac{\pi}{2}$$

$$r = 4\cos(\theta), \quad 0 \le \theta \le \frac{\pi}{2}$$

(a) Find the polar coordinates of the point P where the two curves intersect.	[5]
(b) Find the exact area of the shaded region bounded by the two curves.	[11]
	Total: 16