## Solomon Practice Paper

Pure Mathematics 4A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 6      |       |
| 2        | 6      |       |
| 3        | 6      |       |
| 4        | 7      |       |
| 5        | 9      |       |
| 6        | 12     |       |
| 7        | 14     |       |
| 8        | 15     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





1.

$$f(z) \equiv z^3 - 5z^2 + 17z - 13.$$

| (a) Show that $(z-1)$ is a factor of $f(z)$ .                                                                                               | [1]      |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (b) Hence find all the roots of the equation $f(z) = 0$ , giving your answers in the form $a + \mathbf{i}b$ where $a$ and $b$ are integers. | [5]      |
|                                                                                                                                             | Total: 6 |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |
|                                                                                                                                             |          |

Last updated: May 5, 2023

[6]

| 2. | 2. Find the general solution of the differential equation           |  |  |  |
|----|---------------------------------------------------------------------|--|--|--|
|    | $x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = \frac{\mathrm{e}^x}{x^2},$ |  |  |  |
|    | giving your answer in the form $y = f(x)$ .                         |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |
|    |                                                                     |  |  |  |

| 3. | (a) Express $\frac{1}{r(r+1)}$ in partial fractions.              | [2]      |
|----|-------------------------------------------------------------------|----------|
|    | (b) Hence, or otherwise, find $\sum_{r=3}^{35} \frac{1}{r(r+1)},$ | [4]      |
|    | giving your answer as a fraction in its lowest terms.             | Total: 6 |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |
|    |                                                                   |          |



[7]

| 1. | Find the set of values of $x$ for which $\frac{(x+3)^2}{x+1} < 2.$ |
|----|--------------------------------------------------------------------|
|    | x + 1                                                              |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |
|    |                                                                    |



| 5. | (a) Sketch the curve with polar equation                                                         | [3]          |
|----|--------------------------------------------------------------------------------------------------|--------------|
|    | $r = a\cos(3\theta),  a > 0,  \text{for}  0 \le \theta \le \pi.$                                 |              |
|    | (b) Show that the total area enclosed by the curve $r = a\cos(3\theta)$ is $\frac{\pi a^2}{4}$ . | [6] Total: 9 |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    | ***************************************                                                          |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |
|    |                                                                                                  |              |

6. Figure shows the curves  $y = 2\cos(x)$  and  $y = e^x$  in the interval  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ .



Given that  $f(x) \equiv e^x - 2\cos(x)$ ,

- (a) write down the number of solutions of the equation f(x) = 0 in the interval  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ . [1]
- (b) Show that the equation f(x) = 0 has a solution,  $\alpha$ , in the interval [0, 1].
- (c) Using 0.5 as a first approximation to  $\alpha$ , use the Newton-Raphson process once to find an improved estimate for  $\alpha$ , giving your answer correct to 2 decimal places.
- (d) Show that the estimate of  $\alpha$  obtained in part (c) is accurate to 2 decimal places. [2]

There is another root,  $\beta$ , of the equation f(x) = 0 in the interval [-2, -1].

(e) Use linear interpolation once on this interval to estimate the value of  $\beta$ , giving your answer correct to 2 decimal places. [3]

| <br> | <br> |
|------|------|
| <br> | <br> |
| <br> | <br> |
| <br> | <br> |
|      |      |
| <br> | <br> |
| <br> | <br> |
|      |      |
| <br> | <br> |

[2]

[4]

Total: 12

[6]

7. The complex numbers z and w are such that

$$z = \frac{A}{1-i} \quad \text{and} \quad w = \frac{B}{2+i},$$

where A and B are real.

Given that z + w = 6,

(a) find A and B.

z and w are represented by the points P and Q respectively on an Argand diagram.

- (b) Show P and Q on the same Argand diagram. [5]
- (c) Find the distance PQ in the form  $a\sqrt{5}$ . [3] Total: 14

| *************************************** |                                         |
|-----------------------------------------|-----------------------------------------|
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         | • • • • • • • • • • • • • • • • • • • • |
| ••••••                                  | • • • • • • • • • • • • • • • • • • • • |
| ••••••                                  | • • • • • • • • • • • • • • • • • • • • |
| ••••••                                  | • • • • • • • • • • • • • • • • • • • • |
| ••••••                                  |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |

Last updated: May 5, 2023



| 8. | (a) Find the values of $p$ and $q$ such that                                                                      | [6            |
|----|-------------------------------------------------------------------------------------------------------------------|---------------|
|    | $x = p\cos(t) + q\sin(t)$                                                                                         |               |
|    | satisfies the differential equation                                                                               |               |
|    | $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = \sin(t).$                         |               |
|    | (b) Hence find the solution of this differential equation for which $x = 1$ and $\frac{dx}{dt} = 12$ at $t = 0$ . | [9<br>otal: 1 |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |
|    |                                                                                                                   |               |

