Solomon Practice Paper

Pure Mathematics 3L

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	8	
5	9	
6	12	
7	13	
8	15	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	A circle has the equation
	$4x^2 + 4y^2 - 4x + 24y + 1 = 0.$
	Find
	(a) the coordinates of the centre of the circle,
	(b) the radius of the circle.

[6]

$y = (x+3)^2 e^{-x}$
at the point with coordinates $(0,9)$.

Last updated: May 5, 2023

3.

$f(x) \equiv x^3 + (a+3)x^2 - a^3$.	
Given that when $f(x)$ is divided by $(x + 2)$ the remainder is 4,	
(a) find the three possible values of a .	[4]
Given also that $a > 0$,	
(b) find the remainder when $f(x)$ is divided by $(2x+3)$.	[3]
	Total: 7

Last updated: May 5, 2023

4.	Relative to a fixed origin, O , the points A, B and C have position vectors $(5\mathbf{i} + \mathbf{j} - 11\mathbf{k})$, $(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k})$ and $(11\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ respectively.		
	(a) Find an equation of the line that passes through A and B in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$.	[3]	
	The point M is the midpoint of AB .		
	(b) Show that \overrightarrow{CM} is perpendicular to \overrightarrow{AB} .	[5]	
		Total: 8	

5.

$$f(x) \equiv (1 + 8x)^{\frac{1}{2}}, |x| < \frac{1}{8}.$$

$f(x) \equiv (1+8x)^{\frac{1}{2}}, x < \frac{1}{8}.$	
(a) Express $f(x)$ as a series in ascending powers of x up to and including the term in x^3 .	[3]
(b) Show that $\sqrt{1.08} = \frac{3}{5}\sqrt{3}$.	[2]
(c) Hence, use your series with a suitable value of x to estimate the value of $\sqrt{3}$ correct to 6 significant figures.	[4]
	Total: 9

Last updated: May 5, 2023

6. (a) Given that $\frac{5}{(y-3)(2y-1)} \equiv \frac{A}{y-3} + \frac{B}{2y-1},$ [3]

find the values of A and B.

(b) Given that $\frac{1}{2} < y < 3$, for all values of x, find the general solution to the differential equation [4]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5}(y-3)(2y-1).$$

(c) Given also that y = 1 when $x = \ln(2)$, show that [5]

$$y = \frac{3 + e^x}{2e^x + 1}.$$

Total: 1	.2

7.

$f: x \mapsto \cos(2x) + \sin(x), 0 \le x \le 2\pi.$	
(a) Find the values of x for which $f(x) = 0$.	[4]
(b) Find the values of x for which $f'(x) = 0$.	[6]
(c) Sketch the curve $y = f(x)$.	[3]
(c) Sketch the curve $g = I(x)$.	
	Total: 13
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

8. Figure shows the curve given by the parametric equations

$$x = 2\cos(t)$$
, and $y = \sin^3(t)$, $0 \le t \le 2\pi$.

where t is a parameter.

- (a) Find the coordinates of the points A and B with parameters t=0 and $t=\frac{\pi}{2}$ respectively.
- (b) Show that the area of the region enclosed by the curve is given by the integral

$$\int_0^{\frac{\pi}{2}} 8\sin^4(t) \, \mathrm{d}t.$$

(c) Use the double angle identities to prove that

$$\sin^4(A) = \frac{1}{8} (3 - 4\cos(2A) + \cos(4A)).$$

(4)	(d)	Find the area of the region enclo	osed by the curve, giving your	r answer in terms of π .	[4]
-----	-----	-----------------------------------	--------------------------------	------------------------------	-----

Total: 15

[2]

[5]

[4]