Solomon Practice Paper

Pure Mathematics 3I

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	9	
4	10	
5	11	
6	16	
7	17	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	$f(x) \equiv x^2 + 5x + 26.$
	The remainder when $f(x)$ is divided by $(x-a)$ is twice the remainder when $f(x)$ is divided by
	(x+a).
	Find the possible values of a .

Last updated: May 5, 2023

[7]

 Given that $y = \frac{\pi}{8}$ when $x = \frac{\pi}{4}$. Solve the differential equation
$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos(2x)\cot^2(2y).$

3. Figure shows the circle C with equation

$$x^2 + y^2 - 12x - 2y + 12 = 0.$$

(a) Find the coordinates of the centre of C and write down its radius.

[4]

The shaded region in the diagram is enclosed by C and the two tangents to C which pass through the point P with coordinates (6, 14).

one point 1 with coordinates (0,11).	
(b) Show that the area of the shaded region is 30.6, correct to 3 significant figures.	[5]
	Total: 9

[10]

4.	Using the substitution $u = e^x - 1$, show that	
	$\int_{\ln(2)}^{\ln(5)} \frac{e^{2x}}{\sqrt{e^x - 1}} \mathrm{d}x = \frac{20}{3}.$	

5.	Relative to a fixed origin, O , the points A , B and C have position vectors $(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$, $(10\mathbf{i} - 5\mathbf{j} - 2\mathbf{k})$ and $(4\mathbf{i} + \mathbf{j} - 5\mathbf{k})$ respectively.	
	(a) Show that $\overrightarrow{AC} = k\overrightarrow{AB}$, where k is an exact fraction.	[3]
	(b) Find $\cos(\angle OAC)$.	[5]
	(c) Find the area of triangle <i>OAC</i> correct to 4 significant figures.	[2]
	(d) Hence, write down the area of triangle <i>OAB</i> correct to 3 significant figures.	[1]
	101	tal: 11

Last updated: May 5, 2023

[3]

[5]

Total: 16

6. (a) Find the values of A and B for whi	(a)	Find 7	the	values	of.	A	and	B	for	whi
---	-----	--------	-----	--------	-----	---	-----	---	-----	-----

$$\frac{x-7}{(x+2)(x-1)} \equiv \frac{A}{x+2} + \frac{B}{x-1}.$$

(b) Show that
$$\int_2^4 \frac{x-7}{(x+2)(x-1)} \, \mathrm{d}x = \ln\left(\frac{3}{8}\right).$$

(c) Find, for
$$|x| < 1$$
, the series expansion of [8]

$$\frac{x-7}{(x+2)(x-1)}$$

up to and including the term in x^2 , giving the coefficients as exact fractions.

7. Figure shows the curve C which is defined by the parametric equations

 $x = 2a\cos(t)$, and $y = a\tan^2(t)$, $0 \le t \le \frac{\pi}{2}$,

where t is a parameter and a is a positive constant.

(a) Find and simplify an expression for $\frac{dy}{dx}$ in terms of t.

[5]

The point P on C has parameter $t = \frac{\pi}{3}$

(b) Find an equation of the tangent to C at the point P.

[4]

(c) Show that a Cartesian equation of C is

[3]

$$x^2 = \frac{4a^3}{a+y}.$$

The shaded region R is bounded by C, the positive coordinate axes, and the line y = a.

(d) Find the volume of the solid generated when the region R is rotated through 2π radians about the y-axis. [5]

Total: 17

 	 	 	 	 		 	 	 						 		٠.		 	 	 	٠.			 	 	 			 	
 	 	 	 	 		 	 	 					• •	 		٠.	٠.	 	 	 	٠.	٠.	٠.	 	 	 		٠.	 	
 	 	 	 	 	•	 	 	 	٠.			٠.		 	٠.	٠.	٠.	 	 	 	٠.			 	 	 			 • •	
 	 	 	 	 		 	 	 ٠.	٠.		٠.	٠.		 	٠.		٠.	 	 	 				 	 	 	٠.		 	
 	 	 	 	 	•	 	 	 					•	 			٠.	 	 	 				 	 	 			 	
 	 	 	 	 	•	 	 	 	٠.			٠.		 		٠.	٠.	 	 	 	٠.			 	 	 			 	