## Solomon Practice Paper

Pure Mathematics 3G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 5      |       |
| 2        | 8      |       |
| 3        | 8      |       |
| 4        | 9      |       |
| 5        | 10     |       |
| 6        | 10     |       |
| 7        | 12     |       |
| 8        | 13     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





[5]

| 1. | Given that                                          |
|----|-----------------------------------------------------|
|    | $y = 2e^x(x-1),$                                    |
|    | show that                                           |
|    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{x-1}.$ |
|    | $\mathrm{d}x = x - 1$ .                             |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |

Last updated: May 5, 2023



Total: 8

| 2. ( | a) Find |                                        | [3] |
|------|---------|----------------------------------------|-----|
|      |         | $\int \frac{x}{x^2 + 3}  \mathrm{d}x.$ |     |

(b) Given that y = 1 when x = 1, solve the differential equation [5]

$$\left(x^2 + 3\right) \frac{\mathrm{d}y}{\mathrm{d}x} = xy,$$

giving your answer in the form  $y^2 = f(x)$ .

| •••••••••••••••••••••••••••••••• |  |
|----------------------------------|--|
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |

[8]

| 3. |                                                                                |
|----|--------------------------------------------------------------------------------|
|    | $f(x) \equiv x^3 - x^2 - 8x + 14.$                                             |
|    | When $f(x)$ is divided by $(x - a)$ the remainder is 2.                        |
|    | By forming and factorising a cubic equation, find all possible values of $a$ . |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |
|    |                                                                                |

Last updated: May 5, 2023

[4]

| 4. | Α | curve | has | the | equation |
|----|---|-------|-----|-----|----------|
|----|---|-------|-----|-----|----------|

$$\cos(2x)\tan(y) = 1.$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan(2x)\sin(2y).$$

The curve is stationary at the point with coordinates  $\left(0, \frac{\pi}{4}\right)$ .

| (b) | By evaluating | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ at this stationary point, determine its nature. | [5]     |
|-----|---------------|----------------------------------------------------------------------------------------|---------|
|     |               | T                                                                                      | otal: 9 |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |
|     |               |                                                                                        |         |

10

| 5. | (a) Expand $(1+x)^{-1}$ , $ x  < 1$ , in ascending powers of $x$ as far as the term in $x^3$ . | [2] |
|----|------------------------------------------------------------------------------------------------|-----|
|    | (b) Find the values of $A, B$ and $C$ for which                                                | [3] |
|    | $\frac{1-3x}{(x^2+1)(x+1)} \equiv \frac{Ax+B}{x^2+1} + \frac{C}{x+1}.$                         |     |
|    | (c) Hence, find the series expansion of                                                        | [5] |
|    | $\frac{1-3x}{(x^2+1)(x+1)}$                                                                    |     |
|    | as far as the term in $x^3$ and state the set of values of x for which it is valid.            |     |

| ${ m Te}$ | Total: |
|-----------|--------|
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |
|           |        |

6. The circle C has the equation

$$x^2 + y^2 + 2x - 8y + 15 = 0.$$

| (a) Find the coordinates of the centre of $C$ and write down its radius. | [4       | ŧ]         |
|--------------------------------------------------------------------------|----------|------------|
| P is the point with coordinates $(6,3)$ .                                |          |            |
| (b) Find the minimum distance of $P$ from $C$ .                          | [3       | <u>}</u> ] |
| (2) 2 114 116 11111111111111111111111111111                              | را       | .]         |
| T is a point on $C$ such that the line $PT$ is a tangent to $C$ .        |          |            |
| (c) Find the length of the line $PT$ in the form $k\sqrt{3}$ .           | [3       | ;]         |
| T                                                                        | otal: 10 | 0          |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |
|                                                                          |          |            |

Last updated: May 5, 2023

7. The lines l and m have the vector equations

$$\begin{array}{ll} l & : & \mathbf{r} = 12\mathbf{i} - 9\mathbf{j} + 8\mathbf{k} + \lambda(14\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}), \\ m & : & \mathbf{r} = 4\mathbf{i} + 8\mathbf{j} - 6\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} - 4\mathbf{k}), \end{array}$$

where  $\lambda$  and  $\mu$  are parameters and a and b are constants.

Given that l and m are perpendicular,

| (a) | ) find an equation connecting | a and $b$ . | [2] |
|-----|-------------------------------|-------------|-----|
|     |                               |             |     |

Given also that m passes through the z-axis,

| show that $a=2$ and find the value of $b$ ,                                                       | [6]       |
|---------------------------------------------------------------------------------------------------|-----------|
| show that the lines $l$ and $m$ intersect and find the coordinates of their point of intersection | n. [5]    |
|                                                                                                   | Total: 12 |
|                                                                                                   |           |

| <br>                  |
|-----------------------|
| <br>                  |
| <br>                  |
| <br>                  |
| <br>• • • • • • • • • |
| <br>                  |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>• • • • • • • •   |
| <br>                  |
| <br>                  |



8. Figure shows the curve with equation  $y = 4x^2e^{-2x}$ .



The curve is stationary at the origin, O, and at the point A.

(a) Find the coordinates of point A.

[4]

[9]

The shaded region is bounded by the curve, the x-axis, and the line  $x = \frac{1}{2}$ .

(b) Show that the area of the shaded region is  $\left(1 - \frac{5}{2}e^{-1}\right)$ .

Total: 13

|    | ٠. | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>٠. | <br> | • | <br>٠. | <br> | ٠. | • | <br>   |    | <br>  | <br>   | ٠. | <br>• | <br> | <br>   | ٠. | ٠. | • | <br>• • | <br> |  |
|----|----|----|-------|-------|------|------|--------|-------|------|----|---|--------|------|---|--------|------|----|---|--------|----|-------|--------|----|-------|------|--------|----|----|---|---------|------|--|
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   |    | <br>  | <br>   | ٠. | <br>• | <br> | <br>   |    | ٠. | • | <br>• • | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   |    | <br>  | <br>   | ٠. | <br>• | <br> | <br>   |    | ٠. | • | <br>• • | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   |    | <br>  | <br>   | ٠. | <br>• | <br> | <br>   |    | ٠. | • | <br>• • | <br> |  |
|    |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   |       | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   | ٠. | <br>  | <br>   | ٠. | <br>  | <br> | <br>   |    | ٠. | • | <br>    | <br> |  |
| ٠. |    | ٠. | <br>  | <br>• | <br> | <br> | <br>   |       | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   |    | <br>  | <br>   |    | <br>  | <br> | <br>   |    | ٠. |   | <br>    | <br> |  |
| ٠. | ٠. | ٠. | <br>• | <br>• | <br> | <br> | <br>٠. |       | <br> | ٠. | • | <br>   | ٠.   | • | <br>   |      | ٠. | • | <br>٠. | ٠. | <br>• | <br>٠. | ٠. | <br>• | <br> | <br>٠. | ٠. | ٠. |   | <br>• • | <br> |  |
| ٠. | ٠. | ٠. | <br>• | <br>• | <br> | <br> | <br>٠. |       | <br> | ٠. | • | <br>   | ٠.   | • | <br>   |      | ٠. | • | <br>٠. | ٠. | <br>• | <br>٠. | ٠. | <br>• | <br> | <br>٠. | ٠. | ٠. |   | <br>• • | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   | ٠.   | • | <br>   |      | ٠. | • | <br>   | ٠. | <br>  | <br>   | ٠. | <br>• | <br> | <br>   |    | ٠. | • | <br>• • | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>٠. | <br> | • | <br>٠. | <br> | ٠. | • | <br>   |    | <br>  | <br>   | ٠. | <br>• | <br> | <br>   |    | ٠. |   | <br>    | <br> |  |
|    |    | ٠. | <br>  |       | <br> | <br> | <br>   |       | <br> |    |   | <br>   |      | • | <br>   |      | ٠. | • | <br>   |    | <br>  | <br>   |    | <br>  | <br> | <br>   |    | ٠. |   | <br>    | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>٠. |       | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. |   | <br>   | ٠. | <br>  | <br>   | ٠. |       | <br> | <br>٠. |    | ٠. |   | <br>    | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>٠. |       | <br> | ٠. |   | <br>   |      | • | <br>   |      | ٠. |   | <br>   | ٠. | <br>  | <br>   | ٠. |       | <br> | <br>٠. |    | ٠. |   | <br>    | <br> |  |
| ٠. |    | ٠. | <br>• | <br>• | <br> | <br> | <br>٠. |       | <br> | ٠. |   | <br>   | ٠.   |   | <br>   |      | ٠. | • | <br>   | ٠. | <br>  | <br>   | ٠. |       | <br> | <br>٠. |    | ٠. |   | <br>    | <br> |  |
|    |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   | <br> |   | <br>   | <br> | ٠. | • | <br>   |    | <br>  | <br>   | ٠. |       | <br> | <br>   |    | ٠. |   | <br>• • | <br> |  |
|    |    | ٠. | <br>• | <br>• | <br> | <br> | <br>   | <br>• | <br> | ٠. |   | <br>   | <br> |   | <br>   | <br> | ٠. | • | <br>   |    | <br>  | <br>   | ٠. |       | <br> | <br>   |    | ٠. |   | <br>• • | <br> |  |
|    |    | ٠. | <br>  |       | <br> | <br> | <br>   |       | <br> |    |   | <br>   |      | • | <br>   |      | ٠. |   | <br>   |    | <br>  | <br>   |    | <br>  | <br> | <br>   |    | ٠. |   | <br>    | <br> |  |
|    |    |    | <br>  |       | <br> | <br> | <br>   |       | <br> |    |   | <br>   | <br> |   | <br>   | <br> |    |   | <br>   |    | <br>  | <br>   |    | <br>  | <br> | <br>   |    |    |   | <br>    | <br> |  |
|    |    | ٠. |       | <br>• | <br> | <br> | <br>   |       | <br> | ٠. |   | <br>   | <br> |   | <br>   | <br> | ٠. | • | <br>   | ٠. | <br>  | <br>   | ٠. | <br>  | <br> | <br>   |    | ٠. |   | <br>    | <br> |  |

