Solomon Practice Paper

Pure Mathematics 3D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	8	
5	10	
6	10	
7	13	
8	16	
Total:	77	

How I can achieve better:

•

•

•

1.	Α	curve	is	given	by	the	parametric	equations
----	---	-------	---------------	-------	----	-----	------------	-----------

$$x = 1 + t^2$$
, and $y = 2t^6$.

(a) Find an equation of the curve in Cartesian form.	[2]
(b) Sketch the curve, labelling the coordinates of any points where the curve meets the coordinate axes.	[3]
	Total: 5

Last updated: May 5, 2023

2. The lines l_1 and l_2 are given by

$$l_1$$
: $\mathbf{r} = -38 + 8 + \mathbf{k} + \lambda(5\mathbf{i} - 7\mathbf{j} + 4\mathbf{k})$
 l_2 : $\frac{x-5}{2} = \frac{y+9}{3} + \frac{z-3}{6}$.

(a) Find an equation for l_2 in vector form. [3]

(b)	Find the size of the acute angle	between lines l_1	$_1$ and l_2 in degrees	correct to 1 deci	mal place.	[4]
					Total:	: 7

3.	(a) Use integration by parts to find $\int 2x \ln(x) dx.$	[4]
	(b) Given that $y = 2e$ when $x = e$, solve the differential equation	[4]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\ln(x)}{y}.$	
		Total: 8

4.	Α	curve	has	the	equation
----	---	-------	-----	-----	----------

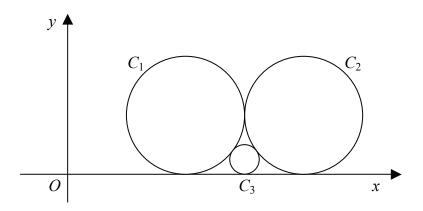
$$4\cos(x) + \tan(y) = 0.$$

(a) Show that $\frac{dy}{dx} = 4\sin(x)\cos^2(y)$.	[3]
$\mathrm{d} x$	LJ

(b)	Find the equation of the normal to the curve at the point with coordinates $(\frac{\pi}{2}, \frac{\pi}{6})$ in the	[5]
	form $ax + by + c = 0$.	

Total: 8

5.	(a)	Given that $ x < 1$, express $(1+x)^{-1}$ as a series in ascending powers of x , as far as the term in x^3 .	[3]	
	(b)	$f(x) \equiv \frac{4x+1}{(1-2x)(1+x)}.$	[7]	
		By expressing $f(x)$ in partial fractions, find the series expansion of $f(x)$ in ascending powers of x as far as the term in x^3 and state the set of values of x for which your series is valid.	1 10	
		0.001	al: 10	


[3]

[7]

10

6.	(a) Find $\int \tan^2(3x) dx$.
	(b) Using the substitution $u = x^2 + 4$, or otherwise, evaluate
	$\int_0^2 \frac{5x}{(x^2+4)^2} \mathrm{d}x.$
	Total:
	Total.

7. Figure shows three circles, C_1, C_2 and C_3 which all touch the x-axis.

Circle C_1 has the equation $x^2 + y^2 - 12x - 8y + 36 = 0$.

(a) Find the coordinates of the centre of C_1 and write down its radius.

[5]

Circle C_2 has the same radius as C_1 and is touching circle C_1 .

(b) Find an equation of circle C_2 .

[3]

[5]

Circle C_3 is touching both circles C_1 and C_2 .

(c) Find an equation of circle C_3 .

Total: 13

8.			[5]
	$y = \frac{x}{\sqrt{x-2}}, x > 2.$		
	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}$		
	(b) Find the coordinates of the stationary point on the curve.		[3]
	(c) Find and simplify an expression for $\frac{d^2y}{dx^2}$.		[5]
	(d) Hence, determine the nature of the stationary point on the curve.		[3]
		Total:	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	
		•	

Last updated: May 5, 2023

