Solomon Practice Paper Pure Mathematics 3C Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 4 | | | 2 | 7 | | | 3 | 8 | | | 4 | 9 | | | 5 | 10 | | | 6 | 11 | | | 7 | 13 | | | 8 | 13 | | | Total: | 75 | | ## How I can achieve better: • • • [4] | 1. | | |----|---| | | $f(x) \equiv 2x^3 + kx^2 - 2k^2x + 9.$ | | | When $f(x)$ is divided by $(x-2)$ the remainder is 1. Find the two possible values of k . | 2. | Given that $y = (2x+3)e^{-2x}$, | | |----|---|----------| | | (a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$, | [3] | | | (b) show that | [4] | | | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 0.$ | [=] | | | $\frac{\mathrm{d}x^2}{\mathrm{d}x} + 4\frac{\mathrm{d}x}{\mathrm{d}x} + 4y = 0.$ | | | | | Total: 7 | Last updated: May 5, 2023 | $1 - 10x + 75x^2 + \dots, ax < 1.$ | | |---|----------| | (a) Find the values of the constants a and b . | [6 | | (b) Find the coefficient of x^3 in the expansion. | [2 | | | Total: 8 | Last updated: May 5, 2023 | 1. | Relative to a fixed origin, O , the points P and Q have position vectors $(2\mathbf{i} + 3\mathbf{j} + 8\mathbf{k})$ and $(6\mathbf{i} - 2\mathbf{j} + 9\mathbf{k})$ respectively. | | |----|--|--------| | | (a) Find, in vector form, an equation of the line l which passes through the points P and Q . | [5 | | | The line m has the equation | | | | $\mathbf{r} = 8\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} - 3\mathbf{k}).$ | | | | (b) Show that the point P lies on the line m . | [6 | | | (c) Show that the lines l and m are perpendicular. | [3 | | | | Total: | 5. Figure shows the curve with parametric equations $$x = 2\sin(t)$$, and $y = \tan(t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. (a) Find the value of t at the point with coordinates $(\sqrt{2}, 1)$. [2] The shaded region is enclosed by the curve, the line y = 1 and the y-axis. (b) Use integration to show that the area of the shaded region is $2(\sqrt{2}-1)$. [8] Total: 10 [4] 6. Figure below shows a cube. The points A and G are diagonally opposite corners of the cube and have position vectors $(\mathbf{i} + 8\mathbf{j} - 3\mathbf{k})$ and $(8\mathbf{i} - 9\mathbf{j} + 10\mathbf{k})$ respectively relative to a fixed origin, O. | (a) Show that the length of one edge of the cube is 13. | [4 | 1] | |---|------------|-----| | (b) By finding the distance of the centre of the cube from O , prove that O is inside the cube. | . [7 | 7] | | | Total: 1 | . 1 | | | . • | | | | . • | | | | . • | | | | | | | | | | | | , . | | | | | | | | . • | | | | . • | | | | . • | | | | . • | | | | . • | | | | | | | | | | | | . • | | | | . • | | | | . • | | | | . • | | | | | | | | | | | | . • | | | | | | 7. $$f(x) \equiv \frac{3}{(x-1)(x+2)}, \quad x \in \mathbb{R}, \quad x \neq -2, 1.$$ (a) Find the values of A and B for which [3] $$f(x) \equiv \frac{A}{x-1} + \frac{B}{x+2}.$$ | $\frac{1}{x} = \frac{1}{x-1} + \frac{1}{x+2}$ | | |--|-----------| | (b) Find the coordinates of the stationary point on the curve $y = f(x)$. | [7] | | (c) Sketch the curve $y = f(x)$. | [3] | | | Total: 13 | 8. | A hot oven is turned off and allowed to cool with the door shut. | | |----|--|--------| | | Let θ be the excess temperature inside the oven over the temperature of the air outside the oven.
The rate at which θ decreases is proportional to θ . | | | | (a) By forming and solving a differential equation, show that | [5] | | | | [] | | | $\theta = Ae^{-kt},$ | | | | where t is the time in minutes after the oven is switched off and A and k are constants. | | | | The temperature inside the oven is 220° C when it is turned off. After 20 minutes the temperature inside the oven is 140° C. | | | | Assuming that the temperature outside the oven remains constant at 20° C as the oven cools, | | | | (b) find the value of A and the value of k correct to 3 significant figures, | [5] | | | (c) find to the nearest minute, how much longer it takes for the temperature inside the oven to fall to 60° C. | [3] | | | Tota | al: 13 | Last updated: May 5, 2023