Solomon Practice Paper

Pure Mathematics 3C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	8	
4	9	
5	10	
6	11	
7	13	
8	13	
Total:	75	

How I can achieve better:

•

•

•

[4]

1.	
	$f(x) \equiv 2x^3 + kx^2 - 2k^2x + 9.$
	When $f(x)$ is divided by $(x-2)$ the remainder is 1. Find the two possible values of k .

2.	Given that $y = (2x+3)e^{-2x}$,	
	(a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$,	[3]
	(b) show that	[4]
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 0.$	[=]
	$\frac{\mathrm{d}x^2}{\mathrm{d}x} + 4\frac{\mathrm{d}x}{\mathrm{d}x} + 4y = 0.$	
		Total: 7

Last updated: May 5, 2023

$1 - 10x + 75x^2 + \dots, ax < 1.$	
(a) Find the values of the constants a and b .	[6
(b) Find the coefficient of x^3 in the expansion.	[2
	Total: 8

Last updated: May 5, 2023

1.	Relative to a fixed origin, O , the points P and Q have position vectors $(2\mathbf{i} + 3\mathbf{j} + 8\mathbf{k})$ and $(6\mathbf{i} - 2\mathbf{j} + 9\mathbf{k})$ respectively.	
	(a) Find, in vector form, an equation of the line l which passes through the points P and Q .	[5
	The line m has the equation	
	$\mathbf{r} = 8\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} - 3\mathbf{k}).$	
	(b) Show that the point P lies on the line m .	[6
	(c) Show that the lines l and m are perpendicular.	[3
		Total:

5. Figure shows the curve with parametric equations

$$x = 2\sin(t)$$
, and $y = \tan(t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

(a) Find the value of t at the point with coordinates $(\sqrt{2}, 1)$.

[2]

The shaded region is enclosed by the curve, the line y = 1 and the y-axis.

(b) Use integration to show that the area of the shaded region is $2(\sqrt{2}-1)$. [8]

Total: 10

.....

[4]

6. Figure below shows a cube.

The points A and G are diagonally opposite corners of the cube and have position vectors $(\mathbf{i} + 8\mathbf{j} - 3\mathbf{k})$ and $(8\mathbf{i} - 9\mathbf{j} + 10\mathbf{k})$ respectively relative to a fixed origin, O.

(a) Show that the length of one edge of the cube is 13.	[4	1]
(b) By finding the distance of the centre of the cube from O , prove that O is inside the cube.	. [7	7]
	Total: 1	. 1
	. •	
	. •	
	. •	
	, .	
	. •	
	. •	
	. •	
	. •	
	. •	
	. •	
	. •	
	. •	
	. •	
	. •	

7.

$$f(x) \equiv \frac{3}{(x-1)(x+2)}, \quad x \in \mathbb{R}, \quad x \neq -2, 1.$$

(a) Find the values of A and B for which

[3]

$$f(x) \equiv \frac{A}{x-1} + \frac{B}{x+2}.$$

$\frac{1}{x} = \frac{1}{x-1} + \frac{1}{x+2}$	
(b) Find the coordinates of the stationary point on the curve $y = f(x)$.	[7]
(c) Sketch the curve $y = f(x)$.	[3]
	Total: 13

8.	A hot oven is turned off and allowed to cool with the door shut.	
	Let θ be the excess temperature inside the oven over the temperature of the air outside the oven. The rate at which θ decreases is proportional to θ .	
	(a) By forming and solving a differential equation, show that	[5]
		[]
	$\theta = Ae^{-kt},$	
	where t is the time in minutes after the oven is switched off and A and k are constants.	
	The temperature inside the oven is 220° C when it is turned off. After 20 minutes the temperature inside the oven is 140° C.	
	Assuming that the temperature outside the oven remains constant at 20° C as the oven cools,	
	(b) find the value of A and the value of k correct to 3 significant figures,	[5]
	(c) find to the nearest minute, how much longer it takes for the temperature inside the oven to fall to 60° C.	[3]
	Tota	al: 13

Last updated: May 5, 2023

