Solomon Practice Paper

Pure Mathematics 3A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	8	
5	9	
6	11	
7	13	
8	13	
Total:	75	

How I can achieve better:

•

•

•

1.	A curve has the equation $y = x^2 e^{3x}$.	
	(a) Find and simplify an expression for $\frac{dy}{dx}$.	[3]
	(b) Find the coordinates of any stationary points on the curve.	[3]
		Total: 6
		10001. 0

2.

$$f(x) \equiv x^3 + ax + 2.$$

Given that the remainder	when $f(x)$ is	divided by	(x+2)	is the same	as the r	remainder	when	f(x)
is divided by $(x-3)$,								

is divided by $(x-3)$,	
(a) find the value of a ,	[4]
(b) find as an exact fraction the remainder when $f(x)$ is divided by $(2x-5)$.	[3]
	Total: 7
	10001. 1
••••••••••••••••••••••••••••••	
••••••••••••••••••••••••••••••	

3.	(a) Expand $(1+2x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^3 , simplifying eacoefficient.	ch [4]
	(b) State the set of values of x for which your series is valid.	[1]
	(c) Use your series with a suitable value of x to estimate the value of $\sqrt{1.02}$ correct to significant figures.	6 [3]
		Total: 8
		• •
		• •
		• •
		. •
		• •

Last updated: May 5, 2023

4.

$$f(x) \equiv \frac{5}{(3x-2)(x+1)}.$$

(a) Express f(x) in the form

A		B		
$\overline{3x-2}$	+	\overline{x} +	1	•

(b) Show that

$\int_{2}^{4} f(x) \mathrm{d}x = \ln$	$\left(\frac{3}{2}\right)$
--	----------------------------

Total: 8	3
----------	---

[3]

[5]

5. The circle C has the equation

$$x^2 + y^2 - 4x - 10y + 20 = 0.$$

(a) Find the coordinates of the centre of C and write down its radius.	[5]
(b) Find an equation for the smallest circle that touches both the circle C and the x -axis.	[4]
	Total: 9

6. A curve has the equation

$$2x^2y - 6y + x^3 = 2.$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 + 4xy}{6 - 2x^2}.$$

The point A with coordinates (2, k) lies on the curve.

(b) Find the value of k.

[2]

(c) Show that the normal to the curve at A has the equation

[4]

[5]

$$x + 6y + 16 = 0.$$

Total: 11

 	 	•••••

Last updated: May 5, 2023

7.	(a) Using the substitution $u = \sin(x)$, or otherwise, find	[4]
	$\int \cos(x)\sin^2(x)\mathrm{d}x.$	
	(b) Hence, find $\int \cos^3(x) \mathrm{d}x.$	[3]
	(c) Given that $y = \frac{\pi}{4}$ when $x = \frac{\pi}{6}$, solve the differential equation	[6]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2(y)\cos^3(x).$	
	Tota	al: 13

[3]

[3]

[2]

[5]

13

8.	Relative to a fixed origin, O , the points A and B have position vectors $(7\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$ and $(\mathbf{i} - 6\mathbf{j} + 12\mathbf{k})$ respectively.
	(a) Find, in vector form, an equation of the line l which passes through A and B .
	Given that the point C has position vector $(-3\mathbf{i} + 12\mathbf{j} + 10\mathbf{k})$ and that M is the mid-point of BC ,
	(b) find the position vector of the point M .
	Given also that $ABMD$ is a rhombus,
	(c) show that the position vector of the point D is $(5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$,
	(d) find the area of $ABMD$ in the form $k\sqrt{2}$ where k is an integer.
	Total
	Total

Last updated: May 5, 2023

