## Solomon Practice Paper

Pure Mathematics 2J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 4      |       |
| 2        | 8      |       |
| 3        | 8      |       |
| 4        | 10     |       |
| 5        | 11     |       |
| 6        | 11     |       |
| 7        | 11     |       |
| 8        | 12     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





[4]

| 1. | Given that $y = 3e^x + 2\ln(x)$ , find $\frac{d^2y}{dx^2}$ . |
|----|--------------------------------------------------------------|
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    |                                                              |
|    | passag                                                       |

| 2. | (a) By letting $p = \log_a(x)$ and $q = \log_a(y)$ , or otherwise, prove that | [4]      |
|----|-------------------------------------------------------------------------------|----------|
|    | $\log_a(xy) \equiv \log_a(x) + \log_a(y).$                                    |          |
|    | (b) Find integers $A$ and $B$ such that                                       | [4]      |
|    | $\ln(48) + \ln(108) = A\ln(2) + B\ln(3).$                                     |          |
|    | ,                                                                             | Total: 8 |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |
|    |                                                                               |          |

| 3. | (a) Express $\left(x^{\frac{1}{2}} - 2x^{-\frac{3}{2}}\right)^2$ in the form $px + qx^{-1} + rx^{-3}$ .<br>(b) Show that | [3]<br>[5] |
|----|--------------------------------------------------------------------------------------------------------------------------|------------|
|    | $\int_{2}^{4} \left( x^{\frac{1}{2}} - 2x^{-\frac{3}{2}} \right)^{2} dx = \frac{51}{8} - 4\ln(2).$                       |            |
|    |                                                                                                                          | Total: 8   |
|    |                                                                                                                          | 10tai: 8   |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |
|    |                                                                                                                          |            |

| 4. | (a) Find the values of $\theta$ in the interval $0 \le \theta \le 2\pi$ , for which | [5        |
|----|-------------------------------------------------------------------------------------|-----------|
|    | $2\tan^2(\theta) + \sec^2(\theta) = 2,$                                             |           |
|    | giving your answers in terms of $\pi$ .                                             |           |
|    | (b) Find the values of x in the interval $0 \le x \le 180^{\circ}$ , for which      | [5        |
|    |                                                                                     | -         |
|    | $\sin(3x) = \sin(2x).$                                                              |           |
|    | r                                                                                   | Fotal: 10 |
|    |                                                                                     | rotar. r  |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |
|    |                                                                                     |           |

Last updated: May 5, 2023

| 5. | Given that $a > 0$ ,                                                                                                                                                                      |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | (a) sketch on the same set of coordinate axes the graphs of $y = \frac{1}{2}(x+a)$ and $y =  2x-a $ , labelling the coordinates of any points where each graph meets the coordinate axes, | [5]       |
|    | (b) find, in terms of a, the coordinates of any points where the two graphs intersect.                                                                                                    | [6]       |
|    |                                                                                                                                                                                           | Total: 11 |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                           |           |

Last updated: May 5, 2023



| 6. | (a) Expand $(4+2x)^5$ as a series in ascending powers of x, simplifying each coefficient.     | [4]       |
|----|-----------------------------------------------------------------------------------------------|-----------|
|    | Hence, find                                                                                   |           |
|    | (b) the coefficient of $y^4$ in the expansion of $(4 + \frac{1}{5}y)^5$ as an exact fraction, | [3]       |
|    | (c) the coefficient of $z^6$ in the expansion of $(2+\sqrt{2}z)^5(2-\sqrt{2}z)^5$ .           | [4]       |
|    |                                                                                               | Total: 11 |
|    |                                                                                               | 10001. 11 |
|    |                                                                                               | •         |
|    |                                                                                               | ,         |
|    |                                                                                               | ,         |
|    |                                                                                               |           |
|    |                                                                                               | •         |
|    |                                                                                               | •         |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               | •         |
|    |                                                                                               | ,         |
|    |                                                                                               | ,         |
|    |                                                                                               | •         |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               | ,         |
|    |                                                                                               | ,         |
|    |                                                                                               | •         |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               |           |
|    |                                                                                               | •         |
|    |                                                                                               | •         |
|    |                                                                                               | •         |
|    |                                                                                               | •         |
|    |                                                                                               |           |
|    |                                                                                               |           |

[2]

[2]

Total: 11

7.

$$f(x) \equiv x^4 - 5x + 3.$$

- (a) Show that one root of the equation f(x) = 0 lies in the interval (0.6, 0.7). [2]
- (b) Using the iteration formula [3]

$$x_{n+1} = 0.2 \left( x_n^4 + 3 \right),\,$$

with a starting value of  $x_1 = 0.65$ , find this root correct to 3 significant figures.

(c) Show that the equation f(x) = 0 can be rewritten as

$$x = \pm \sqrt{\frac{ax+b}{x^2}}$$

where a and b are integers to be found.

(d) Hence, use the iteration formula

$$x_{n+1} = \pm \sqrt{\frac{a_n x + b}{x_n^2}},$$

together with your values of a and b and with  $x_1 = 1.5$  to find  $x_2, x_3$  and  $x_4$  correct to 6 significant figures.

(e) Considering only your values of  $x_2, x_3$  and  $x_4$ , explain why it is reasonable to give a second root of the equation as 1.43 correct to 3 significant figures.

| • • • • | <br>• • | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>• • | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|---------|---------|---------|------|------|------|------|--------|------|--------|---------|------|------|---------|------|------|------|--|
|         | <br>• • | <br>• • | <br> | <br> | <br> | <br> | <br>٠. | <br> | <br>٠. | <br>• • | <br> | <br> | <br>• • | <br> | <br> | <br> |  |
|         | <br>٠.  | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |
|         | <br>    | <br>    | <br> | <br> | <br> | <br> | <br>   | <br> | <br>   | <br>    | <br> | <br> | <br>    | <br> | <br> | <br> |  |



|                                         |                                         | <br> |           |
|-----------------------------------------|-----------------------------------------|------|-----------|
|                                         |                                         | <br> |           |
|                                         |                                         | <br> |           |
|                                         |                                         | <br> | • • • • • |
| •••••                                   |                                         | <br> |           |
|                                         |                                         | <br> |           |
|                                         |                                         | <br> | • • • • • |
| •••••                                   |                                         | <br> | • • • • • |
|                                         |                                         |      |           |
|                                         |                                         | <br> |           |
|                                         |                                         |      | • • • • • |
|                                         | • • • • • • • • • • • • • • • • • • • • | <br> | • • • • • |
|                                         |                                         |      | • • • • • |
|                                         |                                         |      | • • • • • |
|                                         |                                         |      | • • • • • |
|                                         |                                         | <br> | • • • • • |
|                                         |                                         | <br> |           |
| • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | <br> |           |

8. Figure shows the straight line l and the curve y = f(x).



The line and curve intersect at the points  $P(1, \ln(2))$  and  $Q(3, \ln(8))$ .

(a) Find in its simplest form the equation of the line l.

[4]

Given that  $f(x) \equiv \ln(ax + b)$ ,

(b) find the values of a and b,

[5]

[3]

(c) hence, find an expression for  $f^{-1}(x)$ .

Total: 12

|                                         | <br> | <br> |
|-----------------------------------------|------|------|
|                                         | <br> | <br> |
| • • • • • • • • • • • • • • • • • • • • | <br> | <br> |
|                                         |      | <br> |
|                                         | <br> | <br> |
|                                         |      |      |

| <br> |                                         |  |
|------|-----------------------------------------|--|
| <br> |                                         |  |
|      |                                         |  |
| <br> |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
|      |                                         |  |
| <br> |                                         |  |
| <br> | • • • • • • • • • • • • • • • • • • • • |  |

