Solomon Practice Paper Pure Mathematics 2F Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 7 | | | 3 | 8 | | | 4 | 9 | | | 5 | 11 | | | 6 | 11 | | | 7 | 12 | | | 8 | 12 | | | Total: | 75 | | ## How I can achieve better: • • • | 1. | (a) Find | [2] | |----|--|----------| | | $\int 2x - 3e^x dx.$ | [] | | | Given that $f'(x) = 2x - 3e^x$ and that the curve $y = f(x)$ meets the y-axis at the point $(0,6)$, | | | | (b) find $f(x)$. | [3] | | | | Total: 5 | 2. | (a) Sketch on the same set of coordinate axes the graphs of $y = x^2 + 1$ and $y = 2x - 4 $.
(b) Hence, or otherwise, solve the equation $x^2 + 1 = 2x - 4 $. | [3]
[4]
Total: 7 | |----|--|------------------------| 3. | (a) Find the first three terms in the expansion of $(2+kx)^5$ in ascending powers of x , simplifying each coefficient. | [3] | |----|--|----------| | | Given that the coefficient of x^2 in the expansion of $(1-x)(2+kx)^5$ is 60, | | | | (b) find the two possible values of k . | [5] | | | | Total: 8 | | | | 10041. 0 | 4. | (a) Given that | [5] | |----|--|----------| | | $p = \log_2(x)$ and $q = \log_2(y)$, | | | | find expressions in terms of p and q for | | | | i. $\log_2(x^2y)$, | | | | ii. $\log_2\left(\frac{\sqrt{y}}{x^3}\right)$. | | | | | [4] | | | (b) Hence, or otherwise, solve the simultaneous equations | [4] | | | $\log_2(x^2y) = 2$ and $\log_2\left(\frac{\sqrt{y}}{x^3}\right) = -11$ | | | | | Total: 9 | 5. Figure shows part of the curve $y = 2 \ln(x)$. (a) Write the equation of the curve in the form x = f(y). [2] [4] The shaded region is enclosed by the curve, the positive coordinate axes and the line y=2. (b) Use the trapezium rule with 4 intervals of equal width to estimate the area of the shaded region correct to 3 significant figures. [5] (c) Find the volume of the solid generated when the shaded region is rotated through 360° about the y-axis. Give your answer in terms of e and π . Total: 11 |
 |
 |
 | | |------|------|------|--| |
 |
 |
 | | |------|-------| |
 |
 | | | | | | ••••• | | | | | |
 | | | | | | | |
 |
 6. $$f(x) \equiv \sqrt{3}\sin(x) + \cos(x).$$ | $f(x) \equiv \sqrt{3}\sin(x) + \cos(x)$. | | |--|------------| | (a) Express f(x) in the form R sin(x + α) where x is measured in degrees and 0 < α < 90°. (b) State the maximum value of (√3 sin(x) + cos(x)) and the smallest positive value of x for which f(x) takes this value. | [5]
[2] | | (c) Solve the equation $f(x) = \sqrt{2}$, for x in the interval $0 \le x \le 360^{\circ}$. | [4] | | | [4] | | ${ m T}$ | otal: 11 | [3] [3] [2] [4] 12 7. The functions f and g are defined as follows $$f: x \mapsto x^2 - 6x, x \in \mathbb{R},$$ $g: x \mapsto e^x + 3, x \in \mathbb{R}.$ | $g. x \mapsto e + 0, x \in \mathbb{R}.$ | | |--|-----| | (a) Evaluate $g(2 \ln(3))$. | | | (b) Find and simplify an expression for $fg(x)$. | | | (c) Prove that for all values of x , $fg(x) \equiv g(2x) - 12$. | | | (d) Solve the equation $gf(x) = 4$. | | | Tot | al. | | | ат. | ••••••••••••••••••••••••••••••• | 8. Figure shows part of the curve with equation y = f(x) where $$f(x) \equiv kx^{\frac{3}{2}} - \frac{7}{8}\ln(4x).$$ Given that the curve passes through the point $A\left(\frac{1}{4}, \frac{1}{2}\right)$, - (a) show that k = 4, - (b) find f'(x), [3] - (c) prove that the normal to the curve at the point A passes through the origin. [6] Total: 12 |
• • • |
 |
• • • |
• • • | • • • | | • • • |
 | • • • |
 | |
 | • • • | • • • | • • • |
 | • • • |
 |
 |
 | • • | |-----------|-------------|-----------|-----------|-------|-------|-------|-----------|-------|-----------|-------|------|-------|-------|-------|------|-------|------|------|------|-----| |
• • • |
• • • • |
• • • |
• • • | | | |
 | |
 | • • • |
 | • • • | • • • | • • • |
 | • • • |
 |
 |
 | • • | |
 |
 |
 |
 | | | |
 | • • • |
 | |
 | | | • • • |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 | | |
 |
 |
 |
 | | | |
 | |
 | |
 | | | |
 | |
 |
 |
 |
• • • |
 |
• • • |
 | | • • • | • • • |
• • • | |
• • • | • • • |
 | • • • | • • • | • • • |
 | • • • |
 |
 |
 | • • | | |
 |
 |
 |
 |
 | |
 | | |-----|------|------|-----------------|-----------------|------|-------------|------|--| | |
 |
 |
 |
 |
 | |
 | | | |
 |
 |
 |
 |
 | |
 | | | • • |
 |
 |
 |
 |
 | |
 | | | • • |
 |
 |
 |
 |
 | |
 | | | |
 |
 |
• • • • • • |
• • • • • • |
 | |
 | | | |
 |
 |
• • • • • • |
• • • • • • |
 | |
 | | | |
 |
 |
• • • • • • |
• • • • • • |
 | |
 | • • |
 |
 |
 |
 |
 | • • • • • • |
 | | | • • |
 |
 |
 |
 |
 | • • • • • • |
 | | | • • |
 |
 |
 |
 |
 | • • • • • • |
 | | | • • |
 |
 |
 |
 |
 | |
 | | | | | | | | | | | | | • • | | | | | | | | | | • • |
 |
 |
 |
 |
 | • • • • • • |
 | | | | | | | | | | | |