Solomon Practice Paper

Pure Mathematics 2E

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	7	
4	9	
5	9	
6	11	
7	12	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[6]

1.	Given that
	$\frac{1}{x+2} = \frac{3x}{y-4} - \frac{3x+5}{x+2},$
	express y in terms of x as simply as possible.

2.	(a) Given that $y = 3^x$, express 3^{2x+1} as a function of y .	[2]
	(b) Hence, or otherwise, find correct to 3 significant figures the values of x for which	[5]
	$3^{2x+1} - 14(3^x) + 8 = 0.$	
		Total: 7

[7]

3.	Evaluate $\int_{1}^{9} \frac{3 - 4\sqrt{x}}{2x} \mathrm{d}x,$
	giving your answer in the form $a + b \ln(3)$, where a and b are integers.

Last updated: May 5, 2023

4.	(a) Given that	[4]
	$(1 + k\sqrt{3})^4 \equiv A + B\sqrt{3},$	
	show that $A = (1 + 18k^2 + 9k^4)$ and find an expression for B in terms of k.	
	(b) Hence, find the value of k for which	[5]
	$(1 + 1/2)^4 = 017 = 104/2$	
	$(1 + k\sqrt{3})^4 \equiv 217 - 104\sqrt{3}.$	
	r	Total: 9

Last updated: May 5, 2023

Total: 9

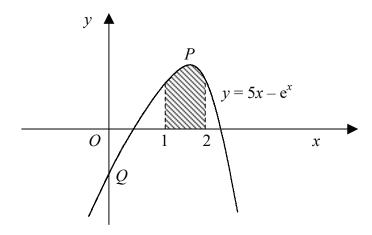
5. The function f is an even function defined for all real values of x.

Given that

$$f(x) \equiv 3x^{\frac{1}{2}}, \quad x \ge 0,$$

sketch each of the following curves on separate diagrams. Your sketches should show the coordinates of any points where each curve meets the coordinate axes.

(a) $y = f(x)$,	[2]


- (b) y = 2f(x+1), [3]
- (c) y = 2 f(x). [4]

6.	(a)	Using the identities	[4
		$\cos(A+B) \equiv \cos(A)\cos(B) - \sin(A)\sin(B),$	
		and $\cos(A-B) \equiv \cos(A)\cos(B) + \sin(A)\sin(B),$ prove the identity	
		$\cos(A) + \cos(B) \equiv 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right).$	
	(b)	Find in terms of π the values of θ in the interval $0 \le \theta \le \pi$ for which	[7
		$\cos(5\theta) + \cos(\theta) = \cos(3\theta).$	
		${ m T}$	otal: 1

Last updated: May 5, 2023

7. Figure shows part of the curve with equation $y = 5x - e^x$.

(a) Find in exact form the coordinates of P, the stationary point on the curve.

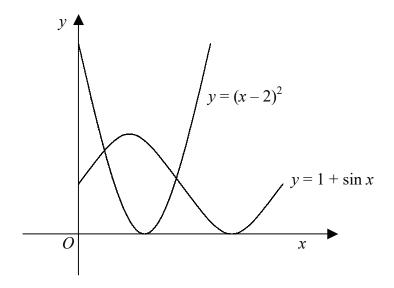
[4]

The curve meets the y-axis at the point Q.

(b) Find an equation of the tangent to the curve at Q.

[4]

[4]


The shaded region is enclosed by the curve, the x-axis and the ordinates x = 1 and x = 2.

(c) Show that the area of the shaded region is $(\frac{15}{2} + e - e^2)$.

Total: 12

	٠.	 	٠.	•	 	 	 	٠.	•	 	•				•		 •										•		 •		•	•	 •			 •			•		 			•		
		 	٠.	•	 	 	 		•	 	•		•		•	•									•				 •		•	•				 •			•	 •		•		•		
• •	٠.	 ٠.	٠.	•	 	 	 		•	 	•		•		•	•	 •	•	•	 •	•			•	•	 •		•	 •		•	•		•	 •		•	 ٠	•	 •	 •	•		•	٠.	•
		 			 	 	 	٠.		 																					•										 					

8. Figure shows the curves with equations $y = (x - 2)^2$ and $y = 1 + \sin(x)$ where x is measured in radians.

- (a) i. State, with a reason, how many solutions there will be to the equation $(x-2)^2 = [4] + \sin(x)$.
 - ii. Show that one solution to the equation lies in the interval [0.5, 1].
- (b) Using the iteration $x_{n+1} = \frac{1}{4} \left(x_n^2 + 3 \sin(x_n) \right)$ [3]

with a starting value of $x_1 = 0.75$, find x_4 correct to 3 significant figures.

- (c) Show that your answer to part (b) is correct to 3 significant figures as a solution to the equation $(x-2)^2 = 1 + \sin(x)$.
- (d) Using an iteration of the form [5]

$$x_{n+1} = a + \frac{\sin(x_n) - b}{x_n},$$

with a starting value of $x_1 = 3$, find another solution of the equation $(x - 2)^2 = 1 + \sin(x)$ correct to 3 significant figures.

Total: 14