Solomon Practice Paper

Pure Mathematics 2D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	8	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

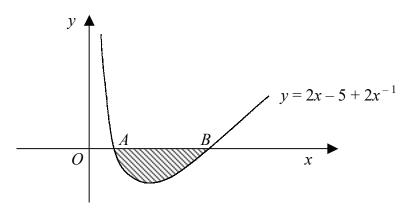
•

•

1.	The	function	f	is	defined	by
----	-----	----------	---	----	---------	----

$$f(x) \equiv \log_3(x), \quad x \in \mathbb{R}, \quad x > 0.$$

(a) Evaluate f(27).	[2]
(b) Solve the equation $f(3^{x+4}) = 2x$.	[3]
	Total: 5


2. A sequence is defined by the recurrence relation

$$u_{n+1} = 4 + \frac{1}{2}u_n, \quad n \ge 1, \quad u_1 = 72.$$

(a) Find the value of u_4 .	[3]
(b) Using the fact that $u_{10} = \frac{65}{8}$, find the value of u_9 as an exact fraction.	[3]
	Total: 6

3. Figure shows part of the curve with equation $y = 2x - 5 + 2x^{-1}$, for x > 0.

The curve crosses the x-axis at the points A and B.

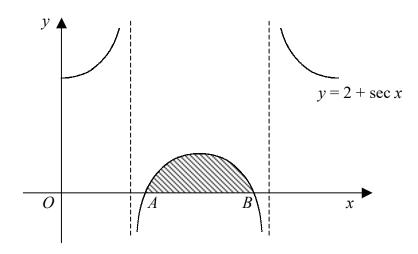
(a) Find the coordinates of the points A and B.

[3]

[5]

(b) Show that the *mathematical* area of the shaded region enclosed by the curve and the x-axis is given by $\frac{1}{4}(16\ln(2)-15)$.

Total: 8


Last updated: May 5, 2023

[3]

4.	(a) Prove by counter-example that $(3^n + 2)$ is not prime for all positive integers n .	[3]
	(b) Use proof by contradiction to show that there are no integers p and q , such that $\frac{p}{q} = \sqrt{2}$, where p and q are co-prime.	[5]
		Total: 8

5. Figure shows the curve $y = 2 + \sec(x)$ for x in the interval $[0, 2\pi]$.

The curve meets the x-axis at the points A and B.

(a) Find the coordinates of the points A and B.

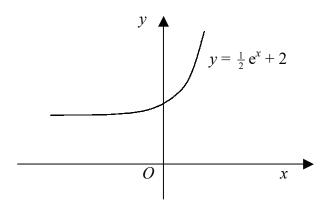
[4]

Total: 10

The shaded region is enclosed by the curve and the x-axis between the points A and B.

(b) Show that estimating the area of the shaded region using the trapezium rule with 5 equally spaced ordinates gives a value of $\frac{1}{18}\pi(15-4\sqrt{3})$.

Last updated: May 5, 2023


6.

(a) Express $f(x)$ in the form $A(x+B)^2 + C$.	[3]
(b) Find the range of $f(x)$.	[2]
(c) Define $f^{-1}(x)$, stating its domain clearly.	[6]
	otal: 11
	otai. 11

Last updated: May 5, 2023

7.	(a) Using the half-angle formulae, or otherwise, prove that for all values of x	[5]
	$\frac{1 + \cos(x)}{1 - \cos(x)} \equiv \cot^2\left(\frac{x}{2}\right).$	
	(b) Hence, find the values of x in the interval $0 \le x \le 2\pi$ for which	[7]
	$\frac{1+\cos(x)}{1-\cos(x)} = 6\csc\left(\frac{x}{2}\right) - 10$	
	giving your answers correct to an appropriate degree of accuracy.	
	,	Total: 12

8. Figure shows part of the curve with equation $y = \frac{1}{2}e^x + 2$ which passes through the point A with coordinates $(\ln(4), 4)$.

(a) Show that the equation of the tangent to the curve at A is $y = 2x + 4 - 4\ln(2)$.

The tangent to the curve at A meets the x-axis at the point B.

(b) Find the coordinates of the point B.

[3]

[4]

The normal to the curve at A meets the x-axis at the point C.

(c) Find the coordinates of the point C.

[5]

[3]

(d) Show that the area of triangle ABC is 20.

Total: 15

• •		• •	•	 	٠.	•	• •	 	• •	•	 •		•	 •	٠.	•	•	•	•	• •	•	 •	•	 •	 •		•		•	•		•	 •	 	•	 ٠.	•		٠.	•	• •	• •	 •		٠.	•	• • •
• •	٠.	• •	•	 	٠.	•	• •	 • •	• •	•	 •		•	 •	٠.	•	•	•	•		•	 •	•	 •	 •	• •	•	• •	•	•		•	 •	 	•	 	•	• •	٠.	•	• •	• •	 •	• •	٠.	•	• • •
٠.			•	 	٠.	•	• •	 • •	• •	•	 •		•	 •	٠.	•	•	•	•		•	 •	•	 •	 •		•		•	•		•	 •	 	•	 	•			•	• •		 •	• •	٠.	•	• •
• •		٠.	•	 		•		 	٠.	•	 •		•	 •		•	•	•	•		•	 •	•	 •	 •		•			•		•	 •	 	•	 	•			•			 •		٠.		• • •
٠.			•	 	٠.	•		 • •	• •	•	 •	٠.	•	 •	٠.	•		•			•	 •		 •	 •		•		•	•		•	 •	 	•	 	•			•	• •		 •		٠.	•	
٠.		٠.	•	 	٠.	•		 		•	 •		•	 •	٠.	•						 •		 •	 •		•			•				 	•	 	•		٠.	•			 		٠.		
٠.		٠.		 		•		 		•			•	 •		•						 •		 •			•			•				 	•	 				•							
		٠.	•	 		•		 		•	 •		•		٠.	•		•				 •		 •	 •		•			•	٠.	•	 •	 	•	 ٠.	•		٠.	•			 •		٠.		
٠.		٠.	•	 	٠.			 			 •				٠.	•								 •						•				 		 									٠.		
	٠.	٠.		 	٠.	•		 	٠.												•													 		 				•					٠.		
		٠.		 	٠.			 							٠.												•							 		 							 		٠.		
٠.		٠.		 				 																										 		 											

