Solomon Practice Paper

Pure Mathematics 2C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	8	
5	10	
6	12	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

1.	(a) Solve the equation	[3]
	$\ln(2x+1) = 3$	
	giving your answer in terms of e.	
	(b) Given that	[3]
	$2^x = 5^y,$	L°.
	show that $y = kx$ where k is a constant that you should find correct to an appropriate	
	degree of accuracy.	
	ŗ	Total: 6

Last updated: May 5, 2023

2.	(a) Use the identity	[2]
	$\sin(A+B) \equiv \sin(A)\cos(B) + \cos(A)\sin(B)$	
	to prove that	
	$\sin(2A) \equiv 2\sin(A)\cos(A).$	
	(b) Hence, or otherwise, use the fact that	[4]
		[4]
	$\sin(15^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}$	
	to find the value of $\cos(15^{\circ})$ in exact form with a rational denominator.	
		Total: 6

[6]

3.	Express $\frac{5x^2 - 11x + 9}{x^2 + 3x - 10} + \frac{3 - 2x}{x - 2}$
	as a single fraction in its simplest form.

4.	The coefficient of x^2 in the expansion of $(1+3x)^n$ is 252.		
	Given that n is a positive integer,		
	(a) find the value of n ,	[5]	
	(b) show that the coefficient of x^3 is 1512.	[3]	
	(b) show that the coefficient of x is 1912.		
		Total: 8	

Last updated: May 5, 2023

5. Figure shows the curve $x = y^2 - 5y + 4$.

(a) Express x^2 in descending powers of y.

[3]

(b) Find $\int x^2 dy$.

- [3]
- (c) Show that the volume generated when the shaded region, bounded by the curve and the positive coordinate axes, is rotated through 2π radians about the y-axis is $\frac{47\pi}{10}$.

Total: 10

[1]

[3]

[3]

[5]

12

6. The functions f and g are defined by

$$\begin{aligned} \mathbf{f} \colon x \mapsto & x^2 - 2, & x \in \mathbb{R}, \\ \mathbf{g} \colon x \mapsto & \mathbf{e}^{\frac{3}{2}x} & x \in \mathbb{R}. \end{aligned}$$

(a) State the range of g.	
(b) Define fg as simply as possible.	
(c) Find, correct to 2 decimal places, the value of x for which $fg(x) = 5$.	
(d) Show that the only value of x for which $g(x) = fg(x)$ is $\frac{2}{3} \ln(2)$.	
(4) 2.10.1 01.20 01.20 01.20 01.20 101.11.20 8(0) 12.3 11.(2).	Total:
	10tai.
	•
	•
	•
	•
	•
	•
	•
	•
	•

7.	(a) Prove that	[6]
	$\cot^2(x) - \tan^2(x) \equiv 4\cot(2x)\csc(2x).$	
	(b) Hence, find in terms of π the values of x in the interval $0 \le x \le \pi$ for which	[7]
	$\cot^2(x) - \tan^2(x) = 8\cot(2x).$	
	Total	: 13

Last updated: May 5, 2023

8. Figure shows part of the curve with equation y = f(x), where

$$f(x) \equiv x - 3\ln(2x), \quad x \in \mathbb{R}, \quad x > 0.$$

The curve crosses the x-axis at the points A and B.

- (a) Show that the x-coordinate of the point A lies in the interval (0.6, 0.7).
- (b) Find the value of N such that the x-coordinate of the point B lies in the interval (N, N+1). [4]

The line y = x meets the curve at the point C.

- (c) Find the coordinates of the point C. [3]
- (d) Show that the equation of the tangent to the curve at C is y = 3 5x. [5]

Tota	1:

.....

[2]

14