Solomon Practice Paper Pure Mathematics 1K Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 5 | | | 3 | 8 | | | 4 | 9 | | | 5 | 9 | | | 6 | 12 | | | 7 | 12 | | | 8 | 15 | | | Total: | 75 | | ## How I can achieve better: • • • | 1. | (a) Express each of the following in the form 3^p , where p is a function of x :
i. 9^{2x-3} | [3] | |----|---|----------| | | ii. 27^{x+2} | | | | (b) Hence, or otherwise, solve the equation | [2] | | | $9^{2x-3} = 27^{x+2}.$ | | | | 2 | | | | | Total: 5 | 2. | (a) Given that | [3] | |----|--|----------| | | $x^2 - 5x + 6 \equiv A(x+B)^2 + C,$ | | | | find the values of A, B and C . | | | | (b) Hence, or otherwise, write down the coordinates of the turning point of the curve wit equation | th [2] | | | $y = x^2 - 5x + 6.$ | | | | | Total: 5 | | | | 10tal. 5 | | | | • • | | | | | | | | | | | | • • | • • | | | | • • | | | | • • | | | | • • | | | | | | | | • • | | | | • • | | | | • • | | | | • • | | | | • • | | | | • • | | | | • • | | | | • • | | | | • • | | | | | | | | | | | | • • | | | | | | | | | | | | | | 3. | The curve $y = 2\sin(3x + k)$, with x measured in degrees, passes through the point $(10, \sqrt{3})$. | | |----|---|----------| | | (a) Given that $0 < k < 90^{\circ}$, show that $k = 30$. | [3] | | | (b) Solve the equation $y = \sqrt{2}$ for values of x in the interval $0 \le x \le 180^{\circ}$ | [5] | | | (2) 10 2 1 2 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Total: 8 | | | | 10tar. 6 | 4. | The line l passes through the points $A(5,1)$ and $B(11,19)$. | | |----|--|----------| | | (a) Find the equation of the line l in the form $ax + by + c = 0$. | [3] | | | The line m passes through the midpoint of AB and has a gradient of $\frac{2}{3}$. | | | | (b) Find an equation of the line m . | [3] | | | (c) Find the area of the triangle enclosed by the lines l, m and the y-axis. | [3] | | | | Total: 9 | | | | rotar. 9 | [3] [4] 5. Figure shows a component cut from a metal sheet. The shape consists of a rectangle of width 15 cm and two circular sectors of radius 8 cm and angle θ . - (a) Given that the perimeter of the shape is 57.4 cm, show that $\theta = 0.7125$ radians. - (b) Calculate the area of the shape correct to 2 decimal places. [2] Figure shows how the component is made by cutting four pieces from a rectangular piece of metal sheet. | (c) Calculate the percentage of the rectangular sneet that is cut on. | [4] | |---|----------| | | Total: 9 | | | | | | • • | | | • • |
 | |------| |
 | [3] [3] [5] [1] 12 6. $$f(x) \equiv 4x - 3 + \frac{9}{x}.$$ | $f(x) \equiv 4x - 3 + \frac{9}{x}.$ | |--| | (a) Prove that the equation $f(x) = 0$ has no real roots. | | (b) Solve the equation $f'(x) = 0$. | | (c) Hence, find the coordinates of the stationary points of the curve $y = f(x)$ and determine their nature. | | (d) State the set of values of x for which $f(x)$ is an increasing function. | | Total: | 7. Figure shows the curves $y = 4x^2$ and $y = 2x^2 - x + 6$ which intersect at the points A and B. (a) Find the coordinates of the points A and B. [5] (b) Find, using integration, the area of the shaded region, R, enclosed by the two curves. [7] Total: 12 | • |
 | • |
• | |---|------|---|---| | • |
 | |
 | | • |
 | |
 | | (b) The 3rd, 4th and 5th terms of a geometric series are given by (x + 4), (4x - 5) and (2x + 1) respectively. i. Show that one possible value of x is ½, and find the other possible value. ii. Find the common ratio and first term of the series for which x = ½. iii. Find the sum to infinity of this series. | [10]
: 15 | |---|--------------| | ii. Find the common ratio and first term of the series for which $x = \frac{1}{2}$. | : 15 | | ii. Find the common ratio and first term of the series for which $x = \frac{1}{2}$. | : 15 | | | : 15 | | v | : 15 | | Total | . 10 | | IOtal |