Solomon Practice Paper Pure Mathematics 1F Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 6 | | | 3 | 6 | | | 4 | 9 | | | 5 | 11 | | | 6 | 12 | | | 7 | 12 | | | 8 | 14 | | | Total: | 75 | | ## How I can achieve better: • • • [5] | $\sqrt{3} - 2\cos(x + 45) = 0.$ | |---------------------------------| Last updated: May 5, 2023 2. | $f(x) \equiv 3 + 21x + 9x^2 - x$ | |----------------------------------| |----------------------------------| | (a) Find $f'(x)$. | [2] | |---|----------| | (b) Find the set of values of x for which $f(x)$ is decreasing. | [4] | | | Total: 6 | •••••• | | | | | | | | | | | [2] | 3. | (a) Expand $(1-5x)(x^3+x)$ in ascending powers of x . | [2] | |----|---|----------| | | (b) Hence show that when $x = \sqrt{3}$, the value of $(1 - 5x)(x^3 + x)$ can be written in the form $a\sqrt{3} + b$ where a and b are integers to be found. | [4] | | | | Total: 6 | 4. Figure shows the badge design for a new model of car. The design consists of an arrowhead in a circle. O is the centre of the circle and A, B and C lie on the circumference of the circle. The arrowhead is symmetrical about the line through OB. Given that the radius of the circle is 7.2 cm and $\angle AOC = 84^{\circ}$, (a) find the size of $\angle AOB$, | (b) calculate the area of triangle AOB , correct to 2 decimal places, | [3] | |--|----------| | (c) calculate the area of the arrowhead as a percentage of the area of the circle. | [4] | | | Total: 9 | [2] Total: 11 | 5. | (a) By completing the square show that $ax^2 + bx + c$ can be written as | [3] | |----|--|-----| | | | | $$a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}.$$ (b) Hence prove that the solutions of the equation $$ax^2 + bx + c = 0$$ are given by [4] $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$ | (c) Solve the equation | | [4] | |------------------------|-----------------|-----| | | x(2x-3) = 1 + x | | giving your answers correct to 3 significant figures. | ••••• | | |-------|--| 6. Figure shows the part of the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$. (a) Find the coordinates of the minimum point of the curve. [6] [6] (b) Find the area of the shaded region enclosed by the curve, the x-axis and the ordinates x = 1 and x = 3, giving your answer as an exact value. Total: 12 |
 | |------| |
 | | | | |
 | |
 | |
 | |
 | Last updated: May 5, 2023 [4] [2] [3] [3] 12 | 7. | The second and fifth terms of an arithmetic series are 213 and 171 respectively. | | |----|---|--------| | | (a) Find the first term and the common difference of the series. | | | | (b) Find and simplify an expression for the n th term of the series in terms of n . | | | | (c) By forming an appropriate inequality, or otherwise, find how many terms of the series are positive. | | | | (d) Hence find the maximum value of S_n , the sum of the first n terms of the series. | | | | J | Total: |
 |
 | |------|---| |
 |
 | | | |
 |
 | |
 |
• | | | | | | | | | | |
 |
 | |
 |
 | 8. Figure shows the lines l_1, l_2 and l_3 . Line l_1 passes through the points A(5,2) and B(7,8). (a) Find an equation of the line l_1 . [3] Line l_2 is perpendicular to line l_1 and also passes through the point A. (b) Find an equation of the line l_2 . [3] Line l_3 has equation x - 2y + 9 = 0 and intersects line l_1 at B and line l_2 at the point C. (c) Find the coordinates of the point C. [4] (d) Prove that triangle ABC is isosceles. Total: 14 |
 |
 | | |------|------|---| |
 |
 | | |
 |
 | • | |
 |
 | | |
 |
 | • | |
 |
 | • | |
 |
 | | |
 |
 | • | |
 |
 | • | |
 |
 | | |
 |
 | • | |
 |
 | • | |
 |
 | • | |
 |
 | | |
 |
 | | |
 |
 | | | |
 | | | |---|------|---|--| | |
 | | | | |
 | • | | | • |
 | | | | | | | Last updated: May 5, 2023