Solomon Practice Paper

Pure Mathematics 1F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	6	
4	9	
5	11	
6	12	
7	12	
8	14	
Total:	75	

How I can achieve better:

•

•

•

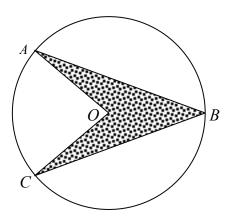
[5]

$\sqrt{3} - 2\cos(x + 45) = 0.$

Last updated: May 5, 2023

2.

$f(x) \equiv 3 + 21x + 9x^2 - x$


(a) Find $f'(x)$.	[2]
(b) Find the set of values of x for which $f(x)$ is decreasing.	[4]
	Total: 6
••••••	

[2]

3.	(a) Expand $(1-5x)(x^3+x)$ in ascending powers of x .	[2]
	(b) Hence show that when $x = \sqrt{3}$, the value of $(1 - 5x)(x^3 + x)$ can be written in the form $a\sqrt{3} + b$ where a and b are integers to be found.	[4]
		Total: 6

4. Figure shows the badge design for a new model of car.

The design consists of an arrowhead in a circle. O is the centre of the circle and A, B and C lie on the circumference of the circle. The arrowhead is symmetrical about the line through OB.

Given that the radius of the circle is 7.2 cm and $\angle AOC = 84^{\circ}$,

(a) find the size of $\angle AOB$,

(b) calculate the area of triangle AOB , correct to 2 decimal places,	[3]
(c) calculate the area of the arrowhead as a percentage of the area of the circle.	[4]
	Total: 9

[2]

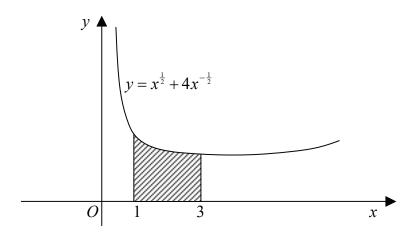
Total: 11

5.	(a) By completing the square show that $ax^2 + bx + c$ can be written as	[3]

$$a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}.$$

(b) Hence prove that the solutions of the equation
$$ax^2 + bx + c = 0$$
 are given by [4]

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$


(c) Solve the equation		[4]
	x(2x-3) = 1 + x	

giving your answers correct to 3 significant figures.

•••••	

6. Figure shows the part of the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$.

(a) Find the coordinates of the minimum point of the curve.

[6]

[6]

(b) Find the area of the shaded region enclosed by the curve, the x-axis and the ordinates x = 1 and x = 3, giving your answer as an exact value.

Total: 12

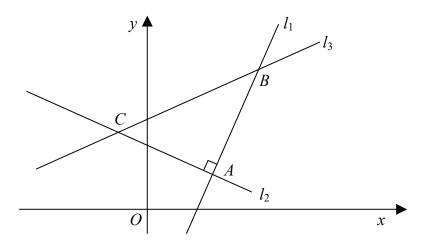
Last updated: May 5, 2023

[4]

[2]

[3]

[3]


12

7.	The second and fifth terms of an arithmetic series are 213 and 171 respectively.	
	(a) Find the first term and the common difference of the series.	
	(b) Find and simplify an expression for the n th term of the series in terms of n .	
	(c) By forming an appropriate inequality, or otherwise, find how many terms of the series are positive.	
	(d) Hence find the maximum value of S_n , the sum of the first n terms of the series.	
	J	Total:

 	 •

8. Figure shows the lines l_1, l_2 and l_3 .

Line l_1 passes through the points A(5,2) and B(7,8).

(a) Find an equation of the line l_1 .

[3]

Line l_2 is perpendicular to line l_1 and also passes through the point A.

(b) Find an equation of the line l_2 .

[3]

Line l_3 has equation x - 2y + 9 = 0 and intersects line l_1 at B and line l_2 at the point C.

(c) Find the coordinates of the point C.

[4]

(d) Prove that triangle ABC is isosceles.

Total: 14

 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •
 	 	• • • • • • • • • • • • • • • • • • • •

	 	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	 		

Last updated: May 5, 2023

