## Solomon Practice Paper

Pure Mathematics 1E

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 5      |       |
| 2        | 6      |       |
| 3        | 7      |       |
| 4        | 7      |       |
| 5        | 9      |       |
| 6        | 13     |       |
| 7        | 13     |       |
| 8        | 15     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•



[5]

| 1. | A cylinder has base radius $(\sqrt{3}-1)$ metres and height $\left(\frac{1}{2+\sqrt{3}}\right)$ metres. |
|----|---------------------------------------------------------------------------------------------------------|
|    | Show that the volume of the cylinder is given by $(14 - 8\sqrt{3})\pi$ m <sup>3</sup> .                 |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |

Last updated: May 5, 2023

2.

| f( | (x) | $\equiv$ | $x^2$ | + | 2kx | + | k | + | 6. |
|----|-----|----------|-------|---|-----|---|---|---|----|
|----|-----|----------|-------|---|-----|---|---|---|----|

| . ,                                                                                   |          |
|---------------------------------------------------------------------------------------|----------|
| (a) Prove that the equation $f(x) = 0$ has repeated roots if $k^2 - k - 6 = 0$ .      | [3]      |
| (b) Hence, or otherwise, find the values of $k$ for which $f(x)$ is a perfect square. | [3]      |
|                                                                                       | Total: 6 |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |
|                                                                                       |          |



3.

$$y = 2x^{\frac{1}{3}} - 3x^{-\frac{1}{3}}.$$

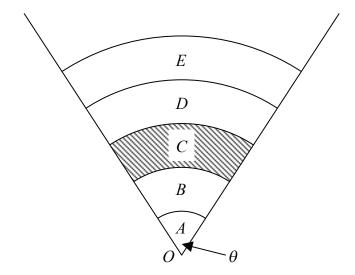
| $y = 2x^{\frac{1}{3}} - 3x^{-\frac{1}{3}}$ .                       |          |
|--------------------------------------------------------------------|----------|
| Given that $u = x^{\frac{1}{3}}$ ,                                 |          |
| (a) express $y$ as a function of $u$ .                             | [2]      |
| (b) Hence, or otherwise, find the values of x for which $y = -5$ . | [5]      |
|                                                                    | Total: 7 |
|                                                                    | 10001. 7 |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |
|                                                                    |          |

Last updated: May 5, 2023



| 4. | (a) Sketch the curve $y = 2\sin(x/2) - 1$ for x in the interval $0 \le x \le 360^{\circ}$ . | [3]      |
|----|---------------------------------------------------------------------------------------------|----------|
|    | (b) Find the values of $x$ for which $y = 0$ .                                              | [4]      |
|    |                                                                                             | Total: 7 |
|    |                                                                                             | 10041.   |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |
|    |                                                                                             |          |

5.


| (a) Find $f'(x)$ .                                    | [2]      |
|-------------------------------------------------------|----------|
| (b) Show that $f'(x)$ has a factor $(x-2)$ .          | [2]      |
| (c) Express $f'(x)$ as a product of 3 linear factors. | [5]      |
|                                                       | Total: 9 |
|                                                       |          |
|                                                       | • • • •  |
|                                                       | • • • •  |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       | • • • •  |
|                                                       |          |
|                                                       | • • • •  |
|                                                       | • • • •  |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |
|                                                       |          |



| • • • • • • • • • • • • • • • • • • • • | <br> | <br> |
|-----------------------------------------|------|------|
|                                         | <br> | <br> |



6. Figure shows a grid used to help spectators estimate distances at an athletics meeting.

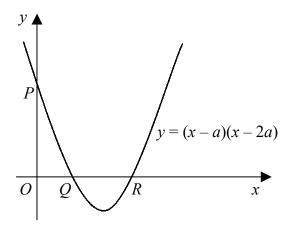


The grid consists of circular sectors, each with centre O and angle  $\theta$ .

The radius of the smallest sector is 5 m and each of the other sectors has a radius 5 m more than the previous one.

- (a) Show that the perimeter, in metres, of the shaded region, C, is  $25\theta + 10$ .
- (b) Show that the perimeters of the regions A, B, C, D and E, are the terms of an arithmetic series. [5]
- (c) Find the ratio of the area of the shaded region, C, to the area of the smallest sector, A, in the form k: 1.

| <br> | <br>• • |          | • • |          | • • | • • | • • | • • | • • | • • | <br> | • • • | • • |   | • • | • • | • • | • • | • • | • • | <br>   | • • | • • | • • | • • | • • | • • |   | • • | ٠. | • • | ٠. | ٠.  | • • | • • | • • |   | • • | • |
|------|---------|----------|-----|----------|-----|-----|-----|-----|-----|-----|------|-------|-----|---|-----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|---|-----|----|-----|----|-----|-----|-----|-----|---|-----|---|
| <br> | <br>    |          | • • |          |     | ٠.  |     |     | • • |     | <br> |       |     |   | • • |     |     |     |     |     | <br>   |     | ٠.  |     |     |     | • • |   | • • | ٠. | ٠.  |    |     |     | • • | • • |   | ٠.  | • |
| <br> | <br>    |          |     |          |     | ٠.  |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    | ٠.  |    |     |     | ٠.  |     |   |     | • |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    | ٠.  |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>٠. |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>    |          |     |          |     |     |     |     |     |     | <br> |       |     |   |     |     |     |     |     |     | <br>   |     |     |     |     |     |     |   |     |    |     |    |     |     |     |     |   |     |   |
|      |         |          |     |          |     |     |     |     |     |     |      |       |     |   |     |     |     |     |     |     |        |     |     |     |     |     |     |   | •   |    |     |    |     |     |     |     |   |     |   |
| <br> | <br>••  | <b>.</b> | •   | <b>.</b> | •   | •   | ••  | • • |     | •   | <br> |       | •   | • | ••  | •   | ••  | •   | •   | •   | <br>   | •   | •   | ••  | •   | ••  |     | • | •   | •  | •   | •  | • • | • • | •   | •   | • | •   | • |


Last updated: May 5, 2023

Total: 13

| <br> |
|------|
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |



7. Figure shows part the graph of y = (x - a)(x - 2a) which intersects the coordinate axes at P, Q, and R.



(a) Write down the coordinates of the points P, Q and R in terms of a.

[3]

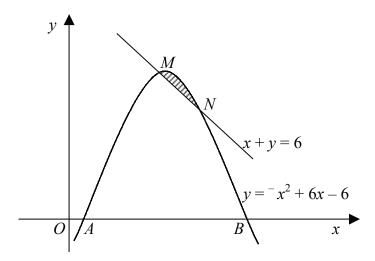
Given that a = 2,

(b) show that the equation of the tangent to the curve at the point R is y = 2x - 8.

[5]

[5]

The normal to the curve at R meets the curve again at S.


(c) Find the x-coordinate of S.

Total: 13

| ٠. | • | <br> | • | <br>٠.  | <br>• | <br>• | <br> | • |     | <br>    | ٠. | • | <br>• | <br>• | ٠. | ٠ | ٠. | • | ٠. | • | ٠. | • | ٠. | • |       | <br>• | <br>٠. | • | <br>• |     | ٠. | • | <br>٠. | • |       | • | <br>   | • | <br> |   | ٠. | • | • |
|----|---|------|---|---------|-------|-------|------|---|-----|---------|----|---|-------|-------|----|---|----|---|----|---|----|---|----|---|-------|-------|--------|---|-------|-----|----|---|--------|---|-------|---|--------|---|------|---|----|---|---|
|    |   | <br> |   | <br>    |       | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    | • |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    |       | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    |       | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    | <br>  | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    | <br>  | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    | <br>  | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   | <br> |   | <br>    | <br>  | <br>  | <br> |   |     | <br>    |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       | <br>   |   |       |     |    |   | <br>   |   | <br>  |   | <br>   |   | <br> |   |    |   |   |
|    |   |      |   |         |       |       |      |   |     |         |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       |        |   |       |     |    |   |        |   |       |   |        |   |      |   |    |   |   |
|    |   |      |   |         |       |       |      |   |     |         |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       |        |   |       |     |    |   |        |   |       |   |        |   |      |   |    |   |   |
|    |   |      |   |         |       |       |      |   |     |         |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       |        |   |       |     |    |   |        |   |       |   |        |   |      |   |    | • | • |
|    |   |      |   |         |       |       |      |   |     |         |    |   |       |       |    |   |    |   |    |   |    |   |    |   |       |       |        |   |       |     |    |   |        |   |       |   |        |   |      |   | ٠. | • | • |
| ٠. | • | <br> | • | <br>• • | <br>• | <br>• | <br> | • | • • | <br>• • |    | • | <br>• | <br>• |    | • |    | • |    | • |    | • |    | • | <br>٠ | <br>• | <br>   | • | <br>• | • • |    | • | <br>٠. | • | <br>• | • | <br>٠. | • | <br> | • | ٠. | • | • |

[3]

8. Figure shows part of the curve  $y = -x^2 + 6x - 6$  and the line x + y = 6.



The curve crosses the line at the points M and N and cuts the x-axis at the points A and B.

(a) Find the x-coordinates of the points A and B, giving your answers correct to 2 decimal places.

(b) Find the coordinates of the points M and N. [5]

(c) Calculate the area of the shaded region enclosed by the curve and the line MN. [7] Total: 15