Solomon Practice Paper

Pure Mathematics 1C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	9	
5	10	
6	10	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	Find the set of values of x for which
	2x(x-9) < (3x+1)(x-5).

2.	(a) Given that	[3
	$x = 2^p \text{and} y = 2^{5p+1}$	
	express each of the following in the form 2^m , where m is a function of p:	
	i. xy	
	ii. $8x^2$	
	(b) Hence find the value of p for which	[3
		-
	$8x^2 - xy = 0.$	
		Total:
		10081.

3.	(a) Prove that the sum, S_n , of the first n terms of a geometric series with first term a and common ratio r is given by $S_n = \frac{a(r^n - 1)}{r - 1}.$	[4]
	(b) Hence evaluate $\sum_{r=1}^{12} 3^r.$	[4]
	To	otal: 8

4. Figure shows the curve $x = 12 + 4y - y^2$

which crosses the y-axis at the point A(0, -2) and at the point B.

(a)) Find	the	${\rm coordinates}$	of	the	point	В.
-----	--------	-----	---------------------	----	-----	-------	----

[3]

[3]

(b) Find
$$\int 12 + 4y - y^2 \, dy$$
.

[3]

Total: 9

(c) Hence find the area of the shaded region, R, enclosed by the curve and the y-axis.

•	 •		 •			•		•		•	•		•	•		•	•				 •		•	•				•			•		•		•	•		•	 •					 •	•		 •	•					•		•	 	•			 	
•	 •	٠.	 •							•	•		•		•		•	•			 •		•	•	•						•		•		•	•	•		 •					 •				•	•	•			•		•	 	•			 	
		٠.	 •							•							•							•							•				•	•																			•	 	•			 . •	
			 _		 _	_	_		 		_	_	_		 _	_	_	_	_	_	 	_	_	_	_	_	_		 	_	_	_		 	_	_	_			_	 	_		 _	_	_		_	_	_	 _	_	_	_	_	 		_	_	 	

5.	(a) Find, giving your answers in terms of π , all values of θ in the interval $0 \le \theta \le 2\pi$ for which	[4
	$\tan\left(\theta - \frac{\pi}{4}\right) = \sqrt{3}.$	
	(b) Find, giving your answers correct to 1 decimal place, all values of x in the interval $0 \le x \le 180^{\circ}$ for which	[6
	$\sin^2(2x) = 0.64.$	
	T	otal: 1

6.	The line l passes through the points $A(5,\sqrt{2})$ and $B(k,4+3\sqrt{2})$ and has gradient $2\sqrt{2}$.	
	(a) Find an equation of the line l .	[2]
	(b) Show that $k = 6 + \sqrt{2}$.	[4]
	Given also that B is the mid-point of AC ,	
	(c) find the coordinates of the point C .	[4]
	Tc	otal: 10

Last updated: May 5, 2023

[5]

[4]

[4]

13

7.

$f(x) \equiv x^3 + ax^2 + bx - 24.$
Given that $(x+2)$ and $(x-3)$ are factors of $f(x)$,
(a) show that $a = 3$ and $b = -10$,
(b) factorise $f(x)$ completely and solve the equation $f(x) = 0$,
(c) find $f'(x)$ and solve the equation $f'(x) = 0$, giving your answers correct to 2 decimal places.
Total:

Last updated: May 5, 2023

8. Figure shows the design for a ramp.

The shape of the ramp is a prism whose cross-section is a right-angled triangle of base 12x cm and height 5x cm. The length of the prism perpendicular to this cross-section is l cm.

The volume of the prism is to be 240000 cm^3 .

- (a) Show that l can be expressed as $l = \frac{8000}{x^2}.$ [2]
- (b) Hence show that the surface area, $A \text{ cm}^2$, can be written as [5]

$$A = 60x^2 + \frac{240,000}{x}.$$

Given that x can vary,

(c) use calculus to find the minimum value of A ,	[5]
(d) justify that the value that you have found is a minimum.	[2]
	Total: 14

