Solomon Practice Paper Pure Mathematics 1C Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 6 | | | 3 | 8 | | | 4 | 9 | | | 5 | 10 | | | 6 | 10 | | | 7 | 13 | | | 8 | 14 | | | Total: | 75 | | ## How I can achieve better: • • • [5] | 1. | Find the set of values of x for which | |----|---| | | 2x(x-9) < (3x+1)(x-5). | 2. | (a) Given that | [3 | |----|---|--------| | | $x = 2^p \text{and} y = 2^{5p+1}$ | | | | express each of the following in the form 2^m , where m is a function of p: | | | | i. xy | | | | ii. $8x^2$ | | | | (b) Hence find the value of p for which | [3 | | | | - | | | $8x^2 - xy = 0.$ | | | | | Total: | | | | 10081. | 3. | (a) Prove that the sum, S_n , of the first n terms of a geometric series with first term a and common ratio r is given by $S_n = \frac{a(r^n - 1)}{r - 1}.$ | [4] | |----|---|---------| | | (b) Hence evaluate $\sum_{r=1}^{12} 3^r.$ | [4] | | | To | otal: 8 | 4. Figure shows the curve $x = 12 + 4y - y^2$ which crosses the y-axis at the point A(0, -2) and at the point B. | (a) |) Find | the | ${\rm coordinates}$ | of | the | point | В. | |-----|--------|-----|---------------------|----|-----|-------|----| |-----|--------|-----|---------------------|----|-----|-------|----| [3] [3] (b) Find $$\int 12 + 4y - y^2 \, dy$$. [3] | Total: 9 | |----------| |
 | |
 | |
 | |
 | (c) Hence find the area of the shaded region, R, enclosed by the curve and the y-axis. | • |
• | |
• | | | • | | • | | • | • | | • | • | | • | • | | | |
• | | • | • | | | | • | | | • | | • | | • | • | | • |
• | | | | |
• | • | |
• | • | | | | | • | | • |
 | • | | |
 | | |---|-------|----|-------|--|-------|---|---|---|------|---|---|---|---|---|-------|---|---|---|---|---|-------|---|---|---|---|---|---|---|------|---|---|---|---|------|---|---|---|---|-------|---|------|---|--|-------|---|---|-------|---|---|---|-------|---|---|---|---|------|---|---|---|---------|--| | • |
• | ٠. |
• | | | | | | | • | • | | • | | • | | • | • | | |
• | | • | • | • | | | | | | • | | • | | • | • | • | |
• | | | | |
• | | | | • | • | • | | | • | | • |
 | • | | |
 | | | | | ٠. |
• | | | | | | | • | | | | | | | • | | | | | | | • | | | | | | | • | | | | • | • | | | | | | | | | | | | | | | | | | | • |
 | • | | |
. • | | | | | | | | | | | |
 |
 | | | |
 |
 | | | | | | | |
 | | | | |
 | | | | | | |
 | | | | | | | | | | | | | | |
 | | | |
 | | | | | |
_ | |
_ | _ | _ | |
 | | _ | _ | _ | |
_ | _ | _ | _ | _ | _ |
 | _ | _ | _ | _ | _ | _ | |
 | _ | _ | _ | |
 | _ | _ | _ | | | _ |
 | _ | |
_ | _ | _ | | _ | _ | _ |
_ | _ | _ | _ | _ |
 | | _ | _ |
 | | |
 |
 |
 | |------|------|------| |
 |
 |
 | 5. | (a) Find, giving your answers in terms of π , all values of θ in the interval $0 \le \theta \le 2\pi$ for which | [4 | |----|---|---------| | | $\tan\left(\theta - \frac{\pi}{4}\right) = \sqrt{3}.$ | | | | (b) Find, giving your answers correct to 1 decimal place, all values of x in the interval $0 \le x \le 180^{\circ}$ for which | [6 | | | $\sin^2(2x) = 0.64.$ | | | | | | | | T | otal: 1 | 6. | The line l passes through the points $A(5,\sqrt{2})$ and $B(k,4+3\sqrt{2})$ and has gradient $2\sqrt{2}$. | | |----|--|----------| | | (a) Find an equation of the line l . | [2] | | | (b) Show that $k = 6 + \sqrt{2}$. | [4] | | | | | | | Given also that B is the mid-point of AC , | | | | (c) find the coordinates of the point C . | [4] | | | Tc | otal: 10 | Last updated: May 5, 2023 [5] [4] [4] 13 7. | $f(x) \equiv x^3 + ax^2 + bx - 24.$ | |--| | Given that $(x+2)$ and $(x-3)$ are factors of $f(x)$, | | (a) show that $a = 3$ and $b = -10$, | | (b) factorise $f(x)$ completely and solve the equation $f(x) = 0$, | | (c) find $f'(x)$ and solve the equation $f'(x) = 0$, giving your answers correct to 2 decimal places. | | Total: | Last updated: May 5, 2023 |
 | | |------|--| |
 | | |
 | | |
 | | | | | |
 |
 | | 8. Figure shows the design for a ramp. The shape of the ramp is a prism whose cross-section is a right-angled triangle of base 12x cm and height 5x cm. The length of the prism perpendicular to this cross-section is l cm. The volume of the prism is to be 240000 cm^3 . - (a) Show that l can be expressed as $l = \frac{8000}{x^2}.$ [2] - (b) Hence show that the surface area, $A \text{ cm}^2$, can be written as [5] $$A = 60x^2 + \frac{240,000}{x}.$$ Given that x can vary, | (c) use calculus to find the minimum value of A , | [5] | |--|-----------| | (d) justify that the value that you have found is a minimum. | [2] | | | Total: 14 |
 |
 | |------|------| |
 |
 | | | | |
 |
 |
 |
 | |
 |
 |