Question Number	Scheme		
1 (a)	e.g. It reduces the potential of bias/favouritism in the selection of the players		
			(1)
(b)	[x =] 18		B1
			(1)
(c)	[Probabi	lity =] 0	B1
			(1)
		Notes	Total 3
(a)	B1 A correct reason referring to reducing bias or favouritism. May say e.g. "will not be selected based on ability" or "everyone has the same chance of being selected". Condone e.g. "no bias" e.g. to make it fair Do not accept reasons relating to the benefits of taking a sample compared to a census e.g. "accurate", "fast" but do not withhold the mark if there is a valid reason which is not contradicted by it		"no bias" as e.g.
(b)	B1	Cao	
(c)	B1	0 oe e.g. 0%	

Question Number	Scheme			
2 (a)	$\sum d^2 = 1 + 4 + 4 + 0 + 0 + 36 + 9 + 4 + 4 + 4 = 66$		M1	
	$r_s = 1 - \frac{1}{1}$	$\frac{6 \times '66'}{0(10^2 - 1)} = 0.6$	M1 A1	
(1-)	Шза-	0 H : 2 > 0	(3)	
(b)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	
		Value $r_s = 0.7455$ or CR: $r_s \dots 0.7455$	B1	
		not reject H ₀ or e.g. not significant or e.g. does not lie in the critical region	M1	
	1 and Ju	e is insufficient evidence of a positive correlation between the ranks of Judge dge 2	A1ft	
			(4)	
		Notes	Total 7	
(a)	M1	For finding the difference between ranks of judge 1 and judge 2 and evaluating $\sum d$	² . May be	
	1711	implied by 66. (Allow one error). May be implied by 0.6 or 0.4		
	M1	For using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (this value cannot just be an attempt at adding	ng the	
		differences). May be implied by 0.6		
(1)	A1	0.6 oe (a correct answer scores 3/3)		
(b)		For both hypotheses correct. Must be in terms of ρ or ρ_s (condone if it appears as p)	
	B1	Must be attached to H_0 and H_1 (do not accept h for H) Do not allow hypotheses in their own.	words on	
	B1	For CV of 0.7455 Allow ± and do not be concerned by use of a strict or inclusive inequality if a critical region is stated		
		A correct statement independent of hypotheses ft part (a) $ r_s < 1$ and their CV where	CV < 1	
	M1	with compatible signs. No context needed but do not allow contradicting non context statements. Condone e.g. "accept H ₀ ", "reject H ₁ " lies in acceptance region. A correct contextual conclusion may imply this mark.		
		Dependent on previous method mark and $ r_s < CV < 1$. For a correct conclusion su	iggesting	
	A1ft	that there is insufficient evidence of a positive correlation between the ranks of the jumention positive correlation, ranks and the judges oe Condone e.g. "there isn't positive correlation between the ranks of the judges". Follo their r_s with 0.7455	idges. Must	
		Note that M0A1ft is not possible.		
		Note that a correct contextual conclusion on its own scores M1A1ft		
	Note	Two-tailed test Applying a two-tailed test scores a maximum of B0B0M1A0 allowing access to the M1 mark or	nly	

Question Number		Scheme			Marks
3 (a)	36×35				M1
	250				1V1 1
	5.04				A1 (2)
	II . The	o is no association between	yyhan tha aar first aynari	anaad an anaina nyahlam	(2)
(b)	and the ty H_1 : The	e is no association between the pe of engine e is an association between the pe of engine	when the car first experie		B1
	Obse	Expected 5.04	$\frac{(O-E)^{2}}{E}$ $\frac{(10-5.04')^{2}}{5.04'} (=4.881)$		M1
			'5.04'		
	$X^2 = 7.4$	4 + '4.881'			dM1
	= 12.	_		awrt 12.3	A1
	v = (3 -	$\chi_4^2(0.05) = 9$	$0.488 \Rightarrow \text{CR: } X^2 \dots 9.488$	3	B1 B1ft
	[In the CR/Significant/Reject H ₀] There is evidence of an association between when the car first experienced an engine problem and the type of engine			A1	
					(7)
(a)	M1	For a correct method for findi	Notes	are other values if found)	Total 9
(u)		For a correct method for finding the expected value (ignore other values if found) 5.04 oe isw e.g. if they attempt to find other expected frequencies as well. 5.04 with no incorrect			
	A1	working seen is 2/2			
(b)	B1	Both hypotheses correct. Engine problems and type of engine mentioned at least once. (may be written in terms of independence (or association) e.g. H ₀ : When the car first experienced an engine problem and the type of engine are independent H ₁ : When the car first experienced an engine problem and the type of engine are not			pendent
	3.54	independent For a correct method for findi	ng the contribution to the	X^2 value (seen or implied). Max	v he seen
	M1	in (a) or by the table	ng the contribution to the	value (seen of implied). We	ly be seen
	dM1	dM1 Dependent on the previous method mark. For finding the test statistic X^2 . Usually by adding their value to 7.444 (seen or implied). If they attempt to find the individual values using the table then the method must be correct.			
	A1	awrt 12.3 (sight of awrt scores			
	B1	v = 4 If not seen then may be	· ·		
	B1ft	9.488 or better or ft their DoF (e.g. $v = 2$, 5.991 or better or $v = 8,15.507$ or $v = 9,16.919$ or better)			
		Dependent on all previous me	thod marks and their X^2	nust lie in the critical region	
		i.e. $X^2 > "9.488"$ (where X^2	>7.444) A correct contex	tualised conclusion which is re	ejecting
	A1	H ₀ Must mention engine prob			
		If hypotheses are the wrong hypotheses are in terms of ρ . "connection" here but not "co	Contradictory statements s		
	1				

Question Number	Scheme Mark				
4 (a)	_	$\left[\frac{200}{0}\right] \Rightarrow \ \ \overline{y} = 290$	B1		
	$\left[s_{y}^{2}\right]^{2}$	$\frac{6741351 - 80(290)^{2}}{80 - 1} \text{ or } \left[s_{y}^{2} = \right] \frac{80}{79} \left(\frac{6741351}{80} - \left(\frac{23200}{80} \right)^{2} \right)$	M1		
	= 169		A1		
			(3)		
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_{\scriptscriptstyle X} -$	$\mu_y = 200$ $H_1: \mu_x - \mu_y > 200$ oe	B1		
	$_{7-+}50$	0 – '290'– 200			
	2. — ±	$\frac{10 - 290 - 200}{80 + 156}$	M1 A1ft		
	1	80 + 80			
	=2.45		A1		
		ed c.v. $Z = 1.6449$ or CR: $Z 1.6449$	B1		
	e.g. In C	CR/Significant/Reject H ₀	M1		
	Sufficier	nt evidence to support the research student's belief	A1 (=)		
()		.1	(7)		
(c)	Assume	that $s^2 = \sigma^2$	B1 (1)		
		Notes	(1) Total 11		
(a)	B1	For $\overline{y} = 290$	2000222		
	M1	A correct method for s_y^2 . May be implied by 169 on its own (not within a calculation	on)		
	A1	169 do not isw			
(b)	D1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ . Use of $\bar{X} - \bar{Y}$ is			
	B0. Allow <i>g</i> for <i>x</i> and <i>r</i> for <i>y</i> but use of any other letters must be defined.				
	M1	An attempt at $\pm \frac{500 - a - 200}{\sqrt{\frac{b}{80} + \frac{1156}{80}}}$ oe with at least 1 of a or b correct using their 290 or their 169 May be implied by awrt ± 2.46 or may state e.g. $N\left(\pm 200, \frac{'169'}{80} + \frac{1156}{80}\right)$ (μ may be 0)			
	A1ft	A correct expression [se $\sqrt{\frac{265}{16}} = 4.0697$] or imp by awrt ± 2.46 or <i>p</i> -value of awrt	0.0072		
	A1	awrt $z = 2.46$ (possibly \pm) or $P(\overline{X} - \overline{Y} > 210) = \text{awrt } 0.00716$ Correct answer scores M1A1ftA1 but $200 - (500 - 290) \rightarrow -10$ loses this 2nd A mar	k		
	B1	awrt ± 1.6449 or better seen or a comparison of <i>p</i> -value awrt $0.007 < 0.05$ oe			
		Dep. on $1 < z < 3$ or $0 < P(\overline{X} - \overline{Y}) < 210' < 0.5$ A correct statement ft on their z value.	ie and CV,		
	M1	with compatible signs, or prob. Context not needed but do not accept contradicting n contextual comments			
	A1	Dep on all previous M and A marks but independent of hypotheses. A correct contextual statement e.g. the mean weight of grey squirrels is more than 200g greater than (the mean weight) of red squirrels o.e. Must mention mean weight at least once if they mention weight or weights. Condone the difference (in mean weights) is greater than 200g			
(c)	B 1	Assume that sample variance = population variance oe (but not e.g. $s_x = s_y$).			

Question Number		Scheme	Marks	
	0×2	$2+1\times40+2\times90+3\times85+4\times30+5\times3$		
	p =	$\frac{2+1\times40+2\times90+3\times85+4\times30+5\times3}{250\times5}$ or		
5 (a)			M1	
	$\hat{p} = \frac{1}{2}$	$\frac{+180+255+120+15}{250\times5} \left(= \frac{610}{1250} = \frac{122}{250} \right)$		
	= 0.48	,	A1	
	- 0.40	30	(2)	
(b)	250 – (4	1.92 + + 6.92	M1	
	= 8.79		A1	
			(2)	
(c)		omial distribution is suitable/sensible (model) omial distribution is not suitable/sensible (model)	B1	
	(2-'8.8		3.61	
	'8.8'	$\left[= 5.25 \right]$	M1	
	$\lceil -(o -$	$-E)^2$		
	$ \sum_{i=1}^{n}$	$\frac{-E)^2}{E} = \begin{bmatrix} 5.70 + 5.25 = 10.95 \end{bmatrix}$	dM1 A1	
	v = 6 - 1		B1	
	$\chi_4^2(0.05) = 9.488 \Rightarrow CR9.488$			
	[In CR/Significant/Reject H ₀]			
	Significant evidence to suggest that a binomial distribution is not a suitable model			
		Notes	(7) Total 11	
(a)		For a correct method to find \hat{p} May be implied by 0.488. Allow one error or omission for		
()	M1	products.		
	A 1			
	A1	0.488 oe e.g. $\frac{61}{125}$		
(b)	M1	For a correct method to find r (Allow $0.512^5 \times 250$) May be implied by 8.79 o	r 8.8(0)	
	A1	Allow 8.8(0)		
(c)	B1	Both Hypotheses correct. Must be attached to H ₀ and H ₁ Do not allow B(5, 0.488) is model	a suitable	
ı				
		I(O = F)		
	M1	For use of $\frac{(O-E)}{E}$ ft their part (b). If no value is found in (b) or they use 5.7 then	M0.	
	M1	For use of $\frac{(O-E)^2}{E}$ ft their part (b). If no value is found in (b) or they use 5.7 then May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0	M0.	
	M1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0		
		May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly a	ttempt	
	M1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly a	ttempt	
		May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0	ttempt	
	dM1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly as $\sum \frac{(O-E)^2}{E} \text{ or } \sum \left(\frac{O^2}{E}\right) - 250 \text{ . May be implied by awrt 10.95 or allow 10.9 or 10.95}$ awrt 10.95 (allow 10.9 or 11.0)	ttempt	
	dM1 A1 B1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly as $\sum \frac{(O-E)^2}{E} \text{ or } \sum \left(\frac{O^2}{E}\right) - 250 \text{ . May be implied by awrt 10.95 or allow 10.9 or 10.9}$ awrt 10.95 (allow 10.9 or 11.0) 4 [degrees of freedom] If not seen then may be implied by 9.488 or 11.143 (or better	ttempt	
	dM1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly as $\sum \frac{(O-E)^2}{E} \text{ or } \sum \left(\frac{O^2}{E}\right) - 250 \text{ . May be implied by awrt } 10.95 \text{ or allow } 10.9 \text{ or } 10.95 \text{ .} 10.95 \text{ (allow } 10.9 \text{ or } 11.0)$ 4 [degrees of freedom] If not seen then may be implied by 9.488 or 11.143 (or better 9.488 or better or ft on their dof e.g. 2: 5.991, 3: 7.815, 5: 11.07(0), 6: 12.592	ttempt	
	dM1 A1 B1	May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0 Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly as $\sum \frac{(O-E)^2}{E} \text{ or } \sum \left(\frac{O^2}{E}\right) - 250 \text{ . May be implied by awrt 10.95 or allow 10.9 or 10.9}$ awrt 10.95 (allow 10.9 or 11.0) 4 [degrees of freedom] If not seen then may be implied by 9.488 or 11.143 (or better	ttempt 11.0 r)	

Question Number		Scheme	Marks
6 (a)	e.g. base	d solely on known observations or e.g. contains no unknown (population) ters	B1
			(1)
(b)		$\frac{1}{2}E(X_1) + \frac{3}{4}E(X_{20}) = \frac{1}{2}\mu + \frac{3}{4}\mu$	M1
	$E(R) = \frac{1}{2}$	$\frac{1}{2}\mu + \frac{3}{4}\mu = \frac{5}{4}\mu \neq \mu \text{ e.g. So } R \text{ is a biased estimator for } \mu$	A1
		1	(2)
(c)	$\frac{5}{4}\mu'-\mu$	$=\frac{1}{4}\mu$	B1ft
			(1)
(d)	One of a	$a-b=2$ oe or $14a+6b=20$ oe or $\frac{a-b}{2} = \frac{14a+6b}{20}$ $[-4b=a]$ oe	B1
	Two of	$a-b=2$ oe, $14a+6b=20$ oe, $\frac{a-b}{2}=\frac{14a+6b}{20}$ oe	B1
	Solves si	multaneously e.g. $14a + 6(a-2) = 20 \Rightarrow a =, b =$	M1
	a = 1.6 o	e, $b = -0.4$ oe	A1
		,	(4)
		Notes	Total 8
(a)	B1	For a correct explanation. Allow a valid explanation which suggests one of the following that it is • based (solely) on observations/calculations/values/information/data oe • contains no unknown (population) parameters • calculated/measured • numerical property of a sample/derived from a sample Do not allow "because it is known" (too vague) but condone "because X ₁ and X ₂₀ are known"	
(b)	M1	For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or	4
	A1	Requires an expression in terms of μ before proceeding to a correct simplified value of reason (e.g. $\neq \mu$) and a conclusion (e.g. biased estimator). Must see use of expectation notation e.g. $E(R)$ or $\frac{1}{2}E(X_1) + \frac{3}{4}E(X_{20})$	of $\frac{5}{4}\mu$, a
(c)	B1ft	Follow through their part (b) $-\mu$ Their part (b) must be in terms of μ . May be seen	n in (b)
(d)	B1	For a correct equation in a and b only. μ must not be present	
	dB1	Dep on 1st B1. For a second different correct equation in a and b only. μ must not	be present
	1	Dependent on at least one correct equation. For solving simultaneously and proceed	ing to values
	M1	for a and b. You do not need to be concerned with the mechanics of the rearrangement values for a and b are achieved. May be implied by a correct value for a or a correct	ent as long as

Question		Scheme	Marks	
Number	Г /-			
7 (a)	$P(X_n <$	$(45.2) = 0.3446$ $\Rightarrow \frac{45.2 - \mu}{\sigma} = -0.4$ oe	M1	
, (a)		$\overline{\sqrt{n}}$	1,11	
	0.	•		
	45.2+-	$\frac{4\sigma}{\sqrt{n}} = \mu$ oe	A1	
	[p(v	75.2) 0.0170 $\frac{1}{2}$ $75.2 - \mu$ 2.1		
		$(75.2) = 0.0179$ $\Rightarrow \frac{75.2 - \mu}{\sigma} = 2.1$ oe	M1	
		$\overline{\sqrt{n}}$		
	$75.2 - \frac{2}{}$	$\frac{1\sigma}{\sqrt{n}} = \mu$ oe	Λ 1	
	13.2-	\sqrt{n} - μ oc	A1	
	eg 452	$c + \frac{0.4\sigma}{\sqrt{n}} = 75.2 - \frac{2.1\sigma}{\sqrt{n}}$ or e.g. $\frac{30}{\sigma} = 2.5$ oe		
	0.6. 13.2	\sqrt{n} \sqrt{n} \sqrt{n} of e.g. σ	M1	
		$\sqrt[N]{n}$		
	$\frac{2.5\sigma}{\sqrt{s}} = 3$	$30 \Rightarrow \left[\sigma = 12\sqrt{n}\right] *$	A1*	
	\sqrt{n}			
		2. 12. F	(6)	
(b)	$\mu = 45.2$	$a + \frac{0.4 \times 12\sqrt{n}}{\sqrt{n}}$ or $\mu = 75.2 - \frac{2.1 \times 12\sqrt{n}}{\sqrt{n}}$	M1	
	$\mu = 50$	\sqrt{n}	A 4	
	$\mu = 30$		A1 (2)	
	σ [1·	$2.\sqrt{n}$	(2)	
(c)	$\left \frac{\partial}{\sqrt{n}} = \right ^{\frac{1}{n}}$	$\left \frac{2\sqrt{n}}{\sqrt{n}}\right = 12$	B1	
	$\frac{\sigma}{\sqrt{n}} = \left[\frac{12\sqrt{n}}{\sqrt{n}}\right] = 12$ $P(\bar{X}_n > 59) = P\left(Z > \frac{59 - 50}{12}\right)$			
	$P(\bar{X}_n > 59) = P(Z > \frac{33}{12})$			
		= 0.2266 awrt 0.227	A1	
		0.2200 unit 0.227	(3)	
		Notes	Total 11	
(a)	Note	If they have not used the tables then maximum score M1A1M1A1M1A0* (5/6)		
	M1	For standardising with μ and $\frac{\sigma}{\sqrt{n}}$ and setting = \pm awrt 0.4		
		4		
	A1	For a correct equation with compatible signs. Condone use of e.g. awrt 0.4		
	M1	For standardising with μ and $\frac{\sigma}{\sqrt{n}}$ and setting = \pm awrt 2.1		
	A1	For a correct equation with compatible signs. Condone use of e.g. awrt 2.1		
		Dependent on at least one correct equation. For solving their 2 equations simultaneously to		
	M1	eliminate μ . Note they may eliminate $\frac{\sigma}{\sqrt{n}}$ first to find μ (= 50) and then substitu	ite this back	
		into one of their simultaneous equations which can score this mark.		
	Answer is given so no incorrect working must be seen. They must have an intermediate			
	A1*	where the equation without μ has the constant terms collected and does not have ar within fractions before proceeding to the given answer.	ту пасионѕ	
	1	within fractions before proceeding to the given answer.		

		e.g. $\frac{30}{\frac{\sigma}{\sqrt{n}}} = 2.5 \Rightarrow \frac{25\sigma}{\sqrt{n}} = 300 \Rightarrow \sigma = 12\sqrt{n}$
Note If they do not have an equation in (a) involving the standard error $\frac{\sigma}{\sqrt{n}}$ then M0A0		
	M1	For substitution of $\sigma = 12\sqrt{n}$ into an equation for μ . May be implied by 50
	A1	50
(c)	B1	Correct SE seen or may be implied e.g. N(,144) or awrt 0.227
	M1	For standardising using their μ and standard error = 12. Can be implied by awrt 0.227
	A1	awrt 0.227 (correct answer provided no incorrect working seen in (c) scores 3/3)

Number		Scheme	Marks	
8(a)	$X = S_1 + S_2 + S_3$			
ı	$[X \square]N$	[(54, 0.0027) or e.g. [E(X) =]54, [Var(X) =]0.0027]	M1 A1	
l	P(X >	$[54.1] = P \left(Z > \pm \frac{54.1 - 54'}{\sqrt{0.0027'}} \right) = P(Z > 1.924)$	M1	
1		[=1-0.9726] = 0.0274 (Calc 0.02714) awrt 0.027	A1	
(1.)	$Y = C_1 -$		(4)	
(b)	-			
ı	$[Y \sqcup]N$	(0,0.0018) or e.g. $[E(Y) =]0$, $[Var(X) =]0.0018$	M1	
l	P(Y >	$0.02) = P\left(Z > \pm \frac{0.02 - 0'}{\sqrt{0.0018'}}\right) = P(Z > 0.4714)$	M1	
ı		[=1-0.6808] = 0.3192 (Calc 0.31867) awrt 0.319	A1	
ı	$2 \times P(Y)$	>0.02) = 2×'0.3192' = 0.6384 (Calc 0.63735) awrt 0.637 - awrt 0.638	M1 A1	
ı	(,	(5)	
(c)	$T = P_1 +$	$C_1 + + C_5 + S_1 + + S_{28}$	(5)	
(•)	Let $R = T - 30P_1 = C_1 + + C_5 + S_1 + + S_{28} - 29P_1$ (or e.g. $Q = T - 30P_1 - 190$)			
ı	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ı	$[R \square] N(194, 33.6697)$ or e.g. $[E(R) =]194, [Var(R) =]33.6697$ (or $N(4, 33.6697)$)			
l	P(R <	$190) = P\left(Z < \pm \frac{190 - 194'}{\sqrt{33.6697'}}\right) = P\left(Z < -0.68935\right) $ (or e.g. $P(Q < 0)$)	M1	
ı		[=1-0.7549] = 0.2451 (Calc 0.2453) awrt 0.245	A1	
			(6)	
		Notes	Total 15	
(a)	M1	For N(54,) oe seen or used. May see e.g. $[E(X) =]3 \times 18$. Implied by awrt 0.027		
ı	A1	For N(54, 0.0027) oe seen or used (Standard deviation (0.05196) May be seen in the	heir	
ı		standardisation. The unevaluated expressions for μ and σ^2 can score For standardising with 54.1, their mean \neq 18 or 6 and their standard deviation \neq 0.0	13 or 0 0027	
ı	M1	(if their mean/or their sd/var are incorrect then working must be shown. Allow \pm star		
ı	A1 awrt 0.027 provided standardisation seen			
(b)	N/1	For N(0, 0.0018) oe seen or used e.g. seen in their standardisation. The unevaluated of	expressions	
ı	M1	for μ and σ^2 can score. Implied by awrt 0.319 or awrt 0.637– awrt 0.638		
İ	M1	For standardising with 0.02, their mean and their standard deviation \neq 0.0018. Allo	w ± stand	
ı	A1	awrt 0.319 provided standardisation seen. May be implied by their final answer		
ı	M1	For 2 \times their 0.319 provided their probability of "0.319" is $<$ 0.5 Imp by correct prob statement		
	A1	Dep on all previous method marks scored and standardisation seen awrt 0.637–	awrt 0.638	
(c)	M1	For sight or use of $T - 30P_1$ may be implied by sight of 194 oe or awrt 33.7 oe. May	attempt	
ı	IVII	$T-30P_1-190$ May be implied by sight of 4.		
ı	A1			
ı	M1 For N(194,) oe seen or used. May be unsimplified. (or N(4,))			
1	A1	For N(194, 33.6697) oe seen or used. The expressions for μ and σ^2 can score. (or No	(4,33.6697))	
		For standardising with 190, their mean and their standard deviation \neq 33.6697. Allow		
ı	M1	FOI Standardising with 190, then mean and then standard deviation $\neq 55.0097$. And	w ± stand	