Question Number		Scheme	Marks				
1 (a)	You wou	ld assign an average rank between the tied ranks	B1 (1)				
(b)	Rank for total tournaments 1 3 4 6 8 9 2 5 10 7						
(0)		0+1+1+4+9+9+25+9+1+9 [= 68]	M1 M1				
	$r_s = 1 - \frac{6 \times '68'}{10(10^2 - 1)}$						
	$10(10^2 - 1)$						
	= 0.58	78 awrt 0.588	A1				
	**		(4)				
(c)		$0, H_1: \rho > 0$	B1				
I		$Value = 0.5636 \text{ or } CR \dots 0.5636$	B1				
	-	or significant or lies in the critical region	dM1				
	I here is s	sufficient evidence of a positive correlation between rank and total tournaments won	A1 (4)				
(d)	2.5% and $r_s = 0.6485$ or CR 0.6485						
(u)	$2.570 \text{ and } F_s = 0.0485 \text{ of CR} \dots 0.0485$						
			(1)				
		Notes	Total 10				
(a)	B1	for an appropriate explanation of how to deal with tied ranks. Ignore any comments	regarding				
	N/1	PMCC Do not allow add 0.5 to both ranks					
(b)	M1	M1attempt to rank total tournaments (at least four correct) Condone reversed ranksfinding the difference between players rank and each of their total tournaments ranks and					
	M1	11 Initially the difference between players tank and each of their total total normalients tanks to evaluating $\sum d^2$ May be implied by 68					
	dM1	dependent on 1 st M1. Using $1 - \frac{6 \sum d^2}{10(99)}$ with their $\sum d^2$ (you will need to check the	eir $\sum d^2$ if				
		no value shown)					
	A1	awrt 0.588 Allow $\frac{97}{165}$					
(c)	B1 both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ and H ₁ If r_s		is negative				
(-)	in part (b) then allow $H_1: \rho < 0$						
	B 1	critical value of 0.5636 If r_s is negative in part (b) then allow -0.5636					
	dM1 dependent on 2 nd B1. A correct statement ft their part (b) and their CV– n not allow contradicting non contextual comments. This may be implied b conclusion.						
	A1	correct conclusion which is rejecting H_0 , which must mention rank and total tourn hypotheses is A0.					
		NB If they have used $H_1: \rho < 0$ then the maximum they can score is B1B1dM1A0)				
(d)	B1	for 2.5% and a correct critical value of 0.6485					

Question Number	Scheme					
2 (a)	$\overline{x} = \left[\frac{7690}{100}\right] = 76.9$					
	$s_x^2 = \frac{669.24}{99} = 6.76$					
			(3)			
(b)	$\mathrm{H}_{0}:\mu_{x}=$	$= \mu_y \qquad \qquad \mathbf{H}_1 : \mu_x \neq \mu_y$	B1			
	$Z = \frac{"7}{\sqrt{"6}}$	$\frac{6.9"-75.9}{0.76"} + \frac{2.2^2}{80} = 2.793$ awrt ± 2.79	M1 M1 A1			
	2 tailed ci	ritical value $z = \pm 2.5758$	B1			
		/Significant/In the critical region	M1			
	There is sufficient evidence to suggest that the mean <u>water temperature</u> after 4 hours for brand \underline{A} is different to brand \underline{B}					
(c)	(It is reasonable) since both samples are (reasonably) large					
(0)						
	Notes					
(a)	B1	for 76.9				
	M1	for use of $\frac{1}{n-1}\sum (x-\overline{x})^2$ oe				
	A1	for 6.76				
(b)	B1	for both hypotheses correct. Must be attached to H_0 and H_1 Allow equivalent hypotheses. Must be in terms of μ Allow any letter for the subscripts				
	M1	M1 for a correct method to find the standard error. Follow through their values from (a)				
	M1 an attempt at $\pm \frac{a-b}{\sqrt{\frac{c}{100} + \frac{d^2}{80}}}$ with at least 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct.					
	A1					
	B1	B1 $z = \operatorname{awrt} \pm 2.5758 \operatorname{seen}$ (Allow $z = \operatorname{awrt} \pm 2.3263$ if a one tailed test is used)				
	M1 a correct statement consistent with their CV and Z value – need not be contextual but do not allow contradicting non contextual comments. This may be implied by a correct contextual conclusion.					
	A1ft	This mark is dependent on the 2^{nd} M mark being awarded. A correct contextual stat CV and their Z value				
(c)	B1	a correct explanation, which makes reference to both samples. e.g. Do not allow the large enough	sample is			

S3_2022_05_MS

Question Number		Scheme	Marks			
3 (a)	26.624	$\left \frac{+28.976}{2}\right = 27.8$	B1			
			(1)			
(b)		$26.624 = 2 \times 1.96 \times \frac{\sigma}{\sqrt{25}}$ or $26.624 = '27.8' - 1.96 \times \frac{\sigma}{\sqrt{25}}$ $076 = '27.8' + 1.96 \times \frac{\sigma}{\sqrt{25}}$	M1 B1			
	$\sigma = 3 *$	v	A1* cso			
			(3)			
(c)	N ·	$\frac{3}{25} = 2.1$ So $z = 1.75$	M1 A1			
	P(Z > '1)	P(Z < -'1.75') = 1 - '0.9599' = '0.0401'	M1 A1ft			
	Confidence	ce level = $100 \times (1 - 2 \times 0.0401) = 91.98\%$	M1 A1			
			(6)			
(d)	2×1.96×	$\propto \frac{3}{\sqrt{n}} < 1.5$	M1			
	$2 \times 1.96 \times \frac{3}{\sqrt{n}} < 1.5$ $\sqrt{n} > \frac{6 \times 1.96}{1.5}$ $\sqrt{n} > \text{awrt } 7.84 \text{So } n = 62$					
	\sqrt{n} > awrt 7.84 So $n = 62$					
			(4)			
(a)	B1	Notes for 27.8	Total 14			
(b)	M1	for 28.976 - 26.624 = 2×z value × $\frac{\sigma}{\sqrt{25}}$ or 26.624 = '27.8'- z value × $\frac{\sigma}{\sqrt{25}}$ 28.976 = '27.8'- z value × $\frac{\sigma}{\sqrt{25}}$ where 1.5 < z < 2.4	or			
	B1	v25 awrt 1.96				
	A1* cso	answer is given so no incorrect working must be seen				
(c)	M1 M1	for $2 \times z \times \frac{3}{\sqrt{25}} = 2.1$				
	A1	for $z = 1.75$				
	M1	for $1 - p$, where p is a probability				
	Alft	for 0.0401 or ft their z value (Allow 0.04)				
	M1	for $100 \times (1 - 2 \times 0.0401)$ ft their P(Z < -1.75)				
	A1	awrt 92.0 (allow 92)				
(d)	M1	for $2 \times z$ value $\times \frac{3}{\sqrt{n}} < 1.5$ oe z value must either be correct or consistent with part (b)				
		Allow \leq or = Condone > or \geq				
	dM1	Dependent on previous M mark. Correct rearrangement to get $\sqrt{n} > \dots$ or $n > \dots$ of Allow \ge or = Condone < or \le	e			
	A1	awrt 7.84 may be implied by awrt 61.5				
	A1	for $n = 62$				

Question Number		Scheme	Marks		
4 (a)	[Continue	ous] uniform on the interval [0, 7]	B1 (1)		
(b)	mean = 3	5	B1		
(0)	standard deviation = $\sqrt{\frac{(7-0)^2}{12}}$				
		$=\frac{7}{\sqrt{12}}=2.0207$ awrt 2.02	A1		
			(3)		
(c)	By the C	LT $\overline{T} \square N\left(3.5, \frac{49}{552}\right)$	M1		
	P(3.4 <	$\overline{T} < 3.6 = P \left(\frac{3.4 - "3.5"}{\sqrt{\frac{49}{552}}} < Z < \frac{3.6 - "3.5"}{\sqrt{\frac{49}{552}}} \right) = \left[P \left(-0.34 < Z < 0.34 \right) \right]$	M1 A1		
	= 0.6331 - (1 - 0.6331) (Calculator gives 0.6314)				
	= 0.2662 (Calculator gives 0.2628) awrt 0.263 to 0.266				
			(5)		
(d)	Large/ in	dependent/ random sample allows use of CLT	B1 (1)		
	NT /				
		Notes For the correct distribution stated (need uniform and correct interval) Allow U[0, 7]	Total 10		
(a)	B1	correct pdf implies B1 e.g. $f(x) = \begin{cases} \frac{1}{7} & 0, x, 7\\ 0 & \text{otherwise} \end{cases}$	A lully		
(b)	B1	For 3.5			
(*)	M1	For a correct method for finding the standard deviation			
	A1	awrt 2.02 (Allow $\frac{7}{\sqrt{12}}$ or $\frac{7\sqrt{3}}{6}$ oe)			
(c)	For writing or using N $\left(3.5, \frac{49}{552}\right)$ oe Allow N $\left(3.5, \frac{2.02^2}{46}\right)$ or ft from part (b) e				
		given in part (a) allow N $\left(7, \frac{7}{46}\right)$			
	M1	For standardising using either 3.4 or 3.6 and their mean and standard deviation			
	A1	For a fully correct expression for either 3.4 or 3.6. May be implied by \pm awrt 0.34			
	M1	For $p - (1 - p)$ or $2(p - 0.5)$ oe			
	A1	awrt 0.263 to 0.266			
(d)	B1	Any suitable assumption			

$ \begin{array}{ c c c c c } \hline S(a) & \mbox{It is not a statistic as it involves unknown [population parameters] & B1 & (1) \\ \hline (b) & \mbox{An estimator for μ is unbiased if its expected value is equal to μ & B1 & (1) \\ \hline (b) & \mbox{An estimator for μ is unbiased if its expected value is equal to μ & B1 & (1) \\ \hline (c) & \mbox{E}(U_1) = 3\mu - 2\mu = \mu$ (therefore unbiased) & \mbox{Al cso} & \mbox{B}(U_2) = \frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased) & \mbox{Al cso} & \mbox{B}(U_2) = \frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased) & \mbox{Al cso} & \mbox{B}(U_2) = \frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased) & \mbox{Al cso} & \mbox{B}(U_1) = 9Var(X_1) + 4Var(X_2)$ or Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$ & \mbox{M}1 & \mbox{B}(U_1) = 113\sigma^2 & \mbox{Al cso} & \mbox{B}(U_1) = 113\sigma^2 & \mbox{Al cso} & \mbox{B}(U_1) = 113\sigma^2 & \mbox{Al cso} & \mbox{Al cso} & \mbox{B}(U_1) = \frac{1}{8}\sigma^2 & \mbox{Al cso} & \mbox{Al cso} & \mbox{Al cso} & \mbox{B}(U_1) > Var(U_2) & U_2$ is the most efficient estimator for μ & \mbox{Al cso} & \mbox{Al cso} & \mbox{B}(U_1) = 113\sigma^2 & \mbox{Al cso} & \mbox{Al correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias -0 is B0 & \mbox{(c)} & \mbox{Al cso} & \mbox{B}(1) + bE(X_2) & \mbox{Al m bian for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts & \mbox{Al cso} & \mbox{Al cso} & \mbox{for a correct solution for $E(U_1)$ with no incorrect working seen Condone missing notation. Condone missing subscripts & \mbox{Al cso} & \mbox{Al cso} & \mbox{Al cso} & \mbox{for a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts & \mbox{Al cso} & \mbox{Al cso} & \mbox{for a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts & \mbox{Al cso} & \mbox{Al cso} & for a orrect solution for $E(U_2)$ with no inc$	Question Number		Scheme	Marks			
		It is not a	statistic as it involves <u>unknown</u> [population parameters]	B1			
(c) $E(U_1) = 3E(X_1) - 2E(X_2) \text{ or } E(U_2) = \frac{1}{4}(E(X_1) + 3E(X_2))$ $E(U_1) = 3\mu - 2\mu = \mu \text{ (therefore unbiased)}$ $E(U_2) = \frac{1}{4}(\mu + 3\mu) = \mu \text{ (therefore unbiased)}$ (d) $Var(U_1) = 9Var(X_1) + 4Var(X_2) \text{ or } Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$ (d) $Var(U_1) = \frac{1}{3\sigma^2}$ (f) $Var(U_1) = \frac{1}{3\sigma^2}$ (g) $Var(U_1) = \frac{1}{3\sigma^2}$ (h) Va							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(b)	An estimator for μ is unbiased if its expected value is equal to μ B1					
E(U_1) = $3\mu - 2\mu = \mu$ (therefore unbiased)A1csoE(U_2) = $\frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased)A1cso(d)Var(U_1) = 9Var(X_1) + 4Var(X_2) or Var(U_2) = $\frac{1}{16}$ Var(X_1) + $\frac{9}{16}$ Var(X_2)M1 $[Var(U_1) =]13\sigma^2$ A1As Var(U_1) > Var(U_2) = $\frac{1}{8}\sigma^2$ A1As Var(U_1) > Var(U_2) = $\frac{1}{8}\sigma^2$ A1(4)(4)(5)B1for a correct explanation, must include unknown(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ Alcsofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U ₂ with a correct reason			1	(1)			
E(U_2) = $\frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased)A1cso(d)Var(U_1) = 9Var(X_1) + 4Var(X_2) or Var(U_2) = $\frac{1}{16}$ Var(X_1) + $\frac{9}{16}$ Var(X_2)M1 $[Var(U_1) =]13\sigma^2$ A1 $[Var(U_2) =]\frac{5}{8}\sigma^2$ A1As Var(U_1) > Var(U_2)U_2 is the most efficient estimator for μ A1(4)(4)(a)B1for a correct explanation, must include unknown(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ Alcsofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2Var(X_1) + b^2Var(X_2)$ (d)M1for use of $a^2Var(X_1) + b^2Var(X_2)$ (a)A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe(b)A1for U_2 with a correct reason	(c)	$E(U_1) =$	$3E(X_1) - 2E(X_2)$ or $E(U_2) = \frac{1}{4}(E(X_1) + 3E(X_2))$	M1			
(d) $Var(U_1) = 9Var(X_1) + 4Var(X_2) \text{ or } Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$ (d) $Var(U_1) =]13\sigma^2$ (A1 $[Var(U_2) =]\frac{5}{8}\sigma^2$ (A1 (Var(U_2) =]\frac{5}{8}\sigma^2 (A1 (A) (Var(U_1) > Var(U_2) U_2 is the most efficient estimator for μ (4) (4) (4) (4) (4) (4) (4) (4) (4) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		$E(U_1) =$	$3\mu - 2\mu = \mu$ (therefore unbiased)	Alcso			
(d) $Var(U_1) = 9Var(X_1) + 4Var(X_2) \text{ or } Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$ M1 $[Var(U_1) =]13\sigma^2$ A1 $[Var(U_2) =]\frac{5}{8}\sigma^2$ A1As $Var(U_1) > Var(U_2)$ U_2 is the most efficient estimator for μ A1(4)NotesTotal 9(a)B1for a correct explanation, must include unknown(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ Alcsofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2Var(X_1) + b^2Var(X_2)$ (d)M1for use of $a^2Var(X_1) + b^2Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason		$E(U_2) =$	$\frac{1}{4}(\mu + 3\mu) = \mu$ (therefore unbiased)	Alcso			
Image:				(3)			
$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	(d)	$\operatorname{Var}(U_1) = 9\operatorname{Var}(X_1) + 4\operatorname{Var}(X_2) \text{ or } \operatorname{Var}(U_2) = \frac{1}{16}\operatorname{Var}(X_1) + \frac{9}{16}\operatorname{Var}(X_2)$					
o As Var(U_1) > Var(U_2) U_2 is the most efficient estimator for μ A1 (4) Motes Total 9 (a) B1 for a correct explanation, must include unknown (4) (b) B1 for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0 (c) (c) M1 for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ (4) Alcso for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts (a) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (b) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) M1 for use of $a^2Var(X_1) + b^2Var(X_2)$ (c) (c) (d) <td< td=""><td></td><td colspan="4">$\left[\operatorname{Var}(U_1) = \right] 13\sigma^2$</td></td<>		$\left[\operatorname{Var}(U_1) = \right] 13\sigma^2$					
(4)NotesTotal 9(a)B1for a correct explanation, must include unknown(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ Alcsofor a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason		$\left[\operatorname{Var}(U_2) = \right] \frac{5}{8} \sigma^2$					
(4) Notes Total 9 (a) B1 for a correct explanation, must include unknown (b) B1 for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0 (c) M1 for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ Alcso for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts (d) M1 for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1 Allow $9\sigma^2 + 4\sigma^2$ A1 Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe A1 for U_2 with a correct reason		As $Var(U_1) > Var(U_2)$ U_2 is the most efficient estimator for μ					
(a)B1for a correct explanation, must include unknown(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ Alcsofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason							
(b)B1for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ A1csofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason				Total 9			
(c)M1for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$ A1csofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscriptsA1csofor a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason	(a)						
A1csofor a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condone missing subscriptsA1csofor a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason	(b)	B1	for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0	is B0			
Alcsomissing subscriptsAlcsofor a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts(d)M1for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason	(c)	M1	for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$				
missing subscripts A1cso for a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation. Condone missing subscripts (d) M1 for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1 Allow $9\sigma^2 + 4\sigma^2$ A1 Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe A1 for U_2 with a correct reason		for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation. Condon					
AlcsoCondone missing subscripts(d)M1for use of $a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2)$ A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason		AICSO	missing subscripts				
Condone missing subscripts (d) M1 for use of $a^2 Var(X_1) + b^2 Var(X_2)$ A1 Allow $9\sigma^2 + 4\sigma^2$ A1 Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe A1 for U_2 with a correct reason		A 1050	for a correct solution for $E(U_2)$ with no incorrect working seen Condone missing notation.				
A1Allow $9\sigma^2 + 4\sigma^2$ A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason		711050					
A1Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oeA1for U_2 with a correct reason	(d)	M1	for use of $a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2)$				
A1 for U_2 with a correct reason		A1	Allow $9\sigma^2 + 4\sigma^2$				
A1 for U_2 with a correct reason		A1	Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe				
NB It is possible to score M1 A0 A0 A1 if $Var(U_1)$ and $Var(U_2)$ are correct		A1					
			NB It is possible to score M1 A0 A0 A1 if $Var(U_1)$ and $Var(U_2)$ are correct				

Question Number		Scheme		Marks		
	$M \square N(80,100) \qquad \qquad W \square N(69,25)$					
6 (a)	$X = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + W_1 + W_2 + W_3$					
		687,675)	1 2 5	M1 A1		
	$P(X > 700) = P\left(Z > \frac{700 - 687}{\sqrt{675}}\right) = P(Z > 0.500)$			M1		
		(=1-0.6915) = 0.3085 (Ca	alculator gives 0.3084)	Al		
				(4)		
(b)	Let $Y = \mathbb{N}$	Number of men in the lift				
		$Y \sqcup$	N(80 <i>x</i> ,100 <i>x</i>)	M1		
	$P(Y > 700) = P\left(Z > \frac{700 - 80x}{10\sqrt{x}}\right) < 0.025$			M1		
	$\frac{700 - 80x}{10\sqrt{x}} > 1.96$			B1		
	$80x + 19.6\sqrt{x} - 700[<0] \qquad \qquad 6400x^2 - 112384.16x + 490000[>0]$			M1		
	Solving leading to $\sqrt{x} < 2.838$ Solving leading to $x < 8.05$			M1		
	So $c = 8$ (people)					
(-)	D1		Notes	Total 10		
(a)	B1	for setting up normal distributio	_			
	B1	for a correct variance (675) or for standard deviation $(15\sqrt{3})$				
	M1	for standardising with 700, 687 and their standard deviation				
	A1	for answer between $0.308 - 0.3$				
(b)	M1	for setting up normal distribution with mean 80x and variance $100x$ (may be implied by use of $sd = 10\sqrt{x}$) Allow any letter				
	M1	for standardising with 700, their mean and their standard deviation (if not stated then these must be correct)				
	B1	for an equation or inequality set = to 1.96 (Allow $- 1.96$)				
	M1	for a correct 3TQ ft their mean and standard deviation				
	M1 for an attempt to solve their 3TQ with either $\sqrt{x} <$ or $x <$ Allow = instead of < Condone > or \ge If the answer is incorrect then we must see use of the quadratic formula/completing the square (Allow one error)					
	A1 cao					

S3_2022_05_MS

Question Number			Sch	neme		Marks	
	H_0 : The observed distribution can be modelled by a discrete uniform distribution					B1	
7 (a)	H_1 : The observed distribution cannot be modelled by a discrete uniform distribution						
	Observ	ved	Expected	$\frac{\left(O-E\right)^2}{E}$	$\frac{O^2}{E}$		
	<i>x</i> + 6		x	36	$(x+6)^2$	-	
	x - 8		x	$\frac{x}{\frac{64}{x}}$	$\frac{x}{\left(x-8\right)^2}$	-	
	x + 8	3	x	$\frac{64}{x}$	$\frac{x}{\left(x+8\right)^2}$	-	
(bi)	x - 5	5	x	$\frac{25}{x}$	$\frac{(x-5)^2}{x}$	B1 M1	
	x + 2	4	x	$\frac{16}{x}$	$\frac{\left(x+4\right)^2}{x}$	-	
	x-5	5	x	$\frac{25}{x}$	$\frac{(x-5)^2}{x}$		
	Total =	= 6x	Total = $6x$	$Total = \frac{230}{x}$	$Total = \frac{6x^2 + 230}{x}$		
	$X^{2} = \sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E} - 6x$; $\frac{230}{x}$ or $\frac{6x^{2} + 230}{x} - 6x$						
	$v = 6 - 1 = 5$; $c_5^2(0.05) = 11.070 \implies CR: X^2 \dots 11.070$						
	Do not reject H_0 if $\frac{230}{x}$, '11.070' or $\frac{6x^2 + 230}{x} - 6x$, '11.070'					M1	
	$x \dots 20.7768 \dots$ So $x = 21$						
(bii)	Hence the die was rolled " 21 " × 6 = 126 times					M1 A1	
	Notes					(2) Total 11	
(a)	B1	for bot	h hypotheses co		the die is not biased H_1 : the die is not biased H_2 is not biased H_2 : the die is not biased H_2 is not biased H_2 : the die is not biased H_2 : the die is not biased H_2 is not biased H_2 : the die is not biased H_2 : the die is not biased H_2 is not biased H_2 is not biased H_2 : the die is not biased H_2 is not biased H_2 is not biased H_2 .		
(bi)	B1	for exp	ected frequency	y = x			
	M1 for one correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ ft their expected frequency						
	M1	for an attempt at X^2 ft their values (At least 4 of these need to be seen and added)					
	A1	for either $\frac{230}{x}$ or $\frac{6x^2 + 230}{x} - 6x$					
	B1						
	B1						
	M1 for either $\frac{230}{x}$, their CV or $\frac{6x^2 + 230}{x} - 6x$, their CV Allow < rather than ,						
	A1 for $x = 21$ provided the previous M mark has been awarded						
(bii)	M1	for their 21 × 6 Allow $6 \times x$ or the answer to $6 \times$ their value for x					
	A1	cao					