Question Number	Scheme M				
1 (a)	$X =$ Number of items of litter found in a $2m^2$ area of the beach So $X \square$ Po(8)				
	$P(X = 5) = \frac{e^{-8} \times 8^5}{5!}$ or $P(X \not\equiv 5) - P(X = 4) = 0.1912 - 0.0996$				
	= 0.09160 awrt 0.0916				
			(2)		
(b)	Y = Num	ber of face masks found in a 5m ² area of the beach			
	$Y \square Po(e$	5) or $P(Y \dots 5) = 1 - P(Y, 4) = 1 - 0.2851$	M1		
		= 0.7149 awrt 0.715	A1		
			(2)		
(c)	W = Nun	hber of items of litter that are not face masks found in a $20m^2$ area of the beach			
	<i>W</i> □ N(5	6,56)	M1		
	P(W < 6	$P(W < 60) = P\left(Z < \frac{59.5 - 56}{\sqrt{56}}\right)$ M1 M1			
	Tables $[= P(Z < 0.47)] = 0.6808$ calculator 0.68000 awrt 0.68				
		Notes	Total 8		
(a)	M1	for use of $\frac{e^{-8}\lambda^5}{5!}$ or $P(X \not\equiv 5) - P(X = 4)$			
	A1	awrt 0.0916 (correct answer scores 2 out of 2)			
		for writing or using Po(6)			
(b)	M 1	or for a correct probability statement $1 - P(Y, 4)$ or $P(Y \dots 5)$			
		e.g. $P(Y \equiv 5) = 1 - P(Y = 5)$ is M0			
	A1	awrt 0.715 (correct answer scores 2 out of 2)			
		for writing or using $N(56, 56)$ may be seen in standardisation			
(c)	M1	(may be implied by the standardisation $\frac{x-56}{\sqrt{56}}$)			
	M1	standardising with 59.5/60/60.5, their mean and their standard deviation			
	M1	using a continuity correction $60 + 0.5$ [=60.5] or $60 - 0.5$ [=59.5]			
	A1	awrt 0.68 (NB Use of exact Poisson gives 0.68617and scores 0 out of 4)			

Question Number	Scheme Mark			
2 (a)	$B\left(25,\frac{1}{5}\right)$			
(b)(i)	[M =]4X	X - (25 - X) = 5X - 25	B1	
(ii)	$\mathrm{E}(M) =$	5'E(X) - 25'	M1	
	$\mathrm{E}(X) = r$	$np = 25 \times \frac{1}{5} = 5$	M1	
	E(M) =	$5 \times 5 - 25 = 0$ *	A1*	
			(4)	
(c)	M? 30:	$\Rightarrow 5'X - 25'? 30 [\Rightarrow X? 11]$	M1	
	$\left[\mathbf{P}(X?) \right]$	$ 11'\rangle = 1 - P(X? 10'\rangle] = 1 - 0.9944' $	M1	
	-0.0056	awrt 0 0056	Δ1	
	-0.0050	<i>uwit</i> 0.0050	(3)	
(d)	$Y \square B(50)$), 0.5)	(3)	
()	P(n < Y)	30) = 0.9328	M1	
	P(Y剟30	(Y - P(Y - n)) = 0.9328	M1	
	P(Y, n)	= 0.0077	M1	
	n = 16		Al	
	11 10		(4)	
	Notes Total			
(a)	B1	Correct distribution fully specified. Allow in words e.g. Binomial with $n = 25$ and $p = 0$	0.2	
	Must be seen in part (a)			
(b)(i)	B1	For a correct expression for M Allow unsimplified		
		For either '5'E(X)-'25' or $E(M) = 5 \times \left(25 \times \frac{1}{5}\right) - 25$ or '4'E(X)-1('25'-	$-\operatorname{E}(X))$	
(ii)	M1	This must be an expectation statement with the expectation stated in symbol or in wor	ds.	
		$5 \times 5 - 25 = 0$ or $4 \times 5 - 1 \times 20 = 0$ on its own is M0		
	M1	For sight of $25 \times \frac{1}{5}$ or stating $E(X) = 5$		
	A 1 *	Fully correct solution with $E(M) = 0$ stated. This may be stated in words.		
	AI	The answer is given so no incorrect working can be seen		
SC		M1M1 [Expected number of marks (per question) =] $4 \times \frac{1}{5} - 1 \times \frac{4}{5}$ A1 therefore E	<i>E(M)</i> =0	
(c)	M1 For substitution of their M into a linear inequality in terms of X implied by X ? 11			
	M1	For use of correct probability statement from their '11'		
(1)	A1	awrt 0.0056 (calc 0.0055549)		
(d)	MI	For a correct probability equation (implied by 2^{10} M1) For $P(V \boxtimes 30) = P(V = n) = 0.0228$ or $0.0405 = P(V = n) = 0.0228$		
		For $P(Y = n) = 0.0077$		
	MI For $P(Y_{n}, n) = 0.00 / /$			
	AI	$P(n < Y_n, 30) = 0.9328$ $P(Y \boxtimes 30) - P(Y = n-1) = 0.9328$ $P(Y_n = -1) = 0.9328$	0077	
SC		scores M1M0M1A0		

Question Number	Scheme Marks			
3 (a)	Po(7)	Po(7) B1		
			(1)	
(b)	Custom	ers enter the shop occur singly/randomly/independently/constant (average) rate	B1, B1	
			(2)	
(c)	$H_0: \lambda =$	$H_0: \lambda = '7' \qquad H_1: \lambda \neq '7'$ B1ft		
(1)	$\mathbf{D}(\mathbf{V}0,1)$	(0.0072) $D(V0.2)$ (0.020)	(1)	
(d)	$P(X \land 1)$	$= a wrt \ 0.0073 \qquad P(X, 2) = a wrt \ 0.0296$	MI	
	P(X? 1:	$B_{3} = awrt \ 0.02 / 0 \qquad P(X? \ 14) = awrt \ 0.0128$	M1	
	$X? 1 \cup Z$	X? 14	Al	
			(3)	
(e)	0.0073+	-0.0128 = 0.0201	M1	
	So 2.01%	/o	Alft	
			(2)	
(f)	12 is not	in the critical region	M1	
	So, there	e is insufficient evidence that rate of customers entering the shop has changed	Al	
		NY .	(2)	
	D1		lotal 11	
(a)	BI	Correct distribution fully specified. Po(isson) and $\lambda = 1$		
(b)	R1 R1	For two of the given assumptions (must have context of customers/people)		
(0)	D 1, D 1	(B1B0 for one assumption in context or for two assumptions with no context)		
(-)	D164	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ		
(c)	BIIT	Ft their 7 from part (a) in the hypotheses		
		Use of $Po(7)$ to find the lower critical value.		
(d)	M1	May be implied by either awrt 0.0073 or awrt 0.0296 seen (must be seen in part (d)) Also implied by $X=1$ or X ? 1		
		Use of Po(7) to find the upper critical value.		
	M1	May be implied by awrt 0.0270 or awrt 0.0128 or awrt 0.973 or awrt 0.987 seen (must part (d))	be seen in	
		Also implied by $X=14$ or X ? 14		
		X? 1, X ? 14 correct CR scores 3 out of 3 but 14? X ? 1 is M1M1A0		
	4.1	Allow equivalent forms e.g. $X < 2, X > 13$		
	AI	Must be a CR and not a probability statement		
		P(X? 1), P(X? 14) scores M1M1A0		
(e)	M1	Adding the two probabilities (each must be less than 0.05) for their critical region		
	A1ft	awrt 0.0201 or awrt 2.01% ft the sum of their two selected probability tails		
		For a correct comparison of 12 with their CR (or their implied CR if one is not explicit	ly stated),	
(f)	M1	12 is not in the CR condone $12 < 14^{\circ}$ Finding $P(Y = 12)$ is M0		
		Finding $P(X \dots 12)$ is who Finding $P(X \dots 12)$ on its own is M0, they must state 12 is not in the CR		
		Correct conclusion in context.		
		Must be a rate, e.g. number in/per 10-minute period (not number on its own).		
	A 1	No hypotheses in part (c) then A0		
		Do not allow comments about the manager's claim on its own, e.g. The manager's claim	m is not	
		supported.		
		I IIIS IS NOL A IT MARK.		

Question Number	Scheme			Marks	
4 (i)(a)	$\frac{b-27}{b-a} =$	$\frac{b-27}{b-a} = \frac{3}{4}$ or $\frac{27-a}{b-a} = \frac{1}{4}$ and $\frac{(b-a)^2}{12} = 300$			M1M1
	a = 12 an	d b = 72			A1 (2)
				1 + 20)	(3)
(b)	$\left[4 P \left(X < \right) \right]$	(k-10) = P(k-10) = P(k-10)	$[X > k + 20] \Rightarrow] 4\left(\frac{k - 10 - 12}{'72 - 12'}\right) = \frac{72 - 6}{'72 - 12'}$	$\frac{k+20}{-12}$	M1
	4(k-22)	$) = 52 - k \Longrightarrow$	<i>k</i> = 28		A1
					(2)
(ii)	<i>L</i> 🗆 U(21	, 42)	$L \square U(0, 42)$	<i>S</i> □ U(5.25, 10.5)	
	$\frac{L}{4} - \left(\frac{42 - L}{4}\right) > 2$		$\frac{L}{4} - \left(\frac{42-L}{4}\right) > 2 \text{ or } \left(\frac{42-L}{4}\right) - \frac{L}{4} > 2$	S - (10.5 - S) > 2	M1
	<i>L</i> > 25		<i>L</i> < 17 or <i>L</i> > 25	<i>S</i> > 6.25	A1
	=(42-'2	$(25') \times \frac{1}{21}$	$=('17'-0)\times\frac{1}{42}+(42-'25')\times\frac{1}{42}$	$(10.5 - 6.25') \times \frac{1}{5.25}$	M1
	$=\frac{17}{21}$ oe			Al	
				(4)	
			Notes		Total 9
(i)(a)	M1	For setting u	p a correct equation for the probability or the v	variance	
	<u>M1</u>	For setting u	p a correct equation for the probability and the	e variance	
(b)	Al M1	For $a = 12$ and E or an unging	nd $b = 72$ (correct answers score 3 out of 3)		
(0)	A1		ipinied equation it then <i>u</i> and then <i>b</i>		
(ii)	M1	For $\frac{L}{4} - \left(\frac{42}{4}\right)^2$ may be seen may be impli-	$\frac{2-L}{4} > 2 \text{ or } \left(\frac{42-L}{4}\right) - \frac{L}{4} > 2 \text{ or } S - (10.5)$ in a probability statement allow any left ied by $L > 25$ or $L < 17$ or $S > 6.25$	(T-S) > 2 ter for <i>L</i> or <i>S</i>	
	A1	L > 25 or	L < 17 or $S > 6.25$ may be seen in a prob	ability statement or implied	l by 2 nd M1
	M1	For use of (4 or ('17'-0): or (10.5-'6	$42 - 25' \times \frac{1}{21} \times \frac{1}{42} + (42 - 25') \times \frac{1}{42} \times \frac{1}{5.25}$		
	A1	Allow awrt ().81		

S2_2024_10_MS

Question Number		Scheme	Marks
5 (a)	$\int_{1}^{x} \frac{1}{4} (3-x)$	t) d $t = \frac{1}{4} \left[3t - \frac{t^2}{2} \right]_1^x$ or $\int \frac{1}{4} (3-x) dx = \frac{1}{4} \left[3x - \frac{x^2}{2} \right] + C$	M1
	$\frac{1}{4} \left[\left(3x - 1 \right)^2 \right] $ Leading	$\frac{x^2}{2} - \left(3 - \frac{1}{2}\right) \text{or } \frac{1}{4} \left[3(1) - \frac{(1)^2}{2}\right] + C = 0 \text{ and } C = -\frac{5}{8}$ to $\frac{1}{4} \left(3x - \frac{x^2}{2}\right) - \frac{5}{8} \text{[for } 1 ? x ? 2]^*$	A1*
			(2)
(b)	$\int_{2}^{x} \frac{1}{4} dt +$	F(2) or $\int \frac{1}{4} dx$ and using $+ c$ with $F(2) = \frac{3}{8}$ or $0.25(x-2) + F(2)$	M1
	$\int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{2} \right)^{x} dt = \frac{1}{2} \int_{3}^{x} \frac{1}{4} \left(t - \frac{1}{$	2) dt + F(3) or $\int \frac{1}{4} (x-2) dx$ and using + c with either F(3) = $\frac{5}{8}$ or F(4) = 1	M1
	$\mathbf{F}(x) = \left\{ \begin{array}{c} \\ \end{array} \right.$	0 x < 1 $\frac{1}{4} \left(3x - \frac{x^2}{2} \right) - \frac{5}{8} 1? x? 2$ $\frac{1}{8} (2x - 1) 2 < x? 3$ $\frac{1}{4} \left(\frac{x^2}{2} - 2x \right) + 1 3 < x? 4$ 1 x > 4	A1 A1 B1
	((5)
(c)	P(1.2 < 2	K < 3.1) = F(3.1) - F(1.2)	
	$\left(\frac{1}{4}\left(\frac{(3.1)}{2}\right)\right)$	$\frac{1)^{2}}{2} - 2(3.1) + 1 - \left(\frac{1}{4} \left(3(1.2) - \frac{(1.2)^{2}}{2}\right) - \frac{5}{8}\right) = \frac{89}{160} $ awrt 0.556	M1 A1
		Notes	(2) Total 9
(a)	M1	For a correct method for 1? x? 2 Condone poor notation e.g. $\int_{1}^{x} \frac{1}{4} (3-x) dx$	100017
	A1*	A fully correct solution with substitution seen or C found leading to $F(x) = \frac{1}{4} \left(3x - \frac{1}{4} \right)^2$	$\left(\frac{x^2}{2}\right) - \frac{5}{8}$
(b)	M1	For a correct method for $2 < x$? 3	
	M1	For a correct method for $3 < x$? 4	
	A1	Third line correct including inequality. Allow < instead of ≤	
	A1	Fourth line correct including inequality. Allow < instead of ≤	
	B 1	First and fifth line correct. Allow "otherwise" for the range on the first or fifth line by	ut not both
(c)	M1	For use of F(3.1) – F(1.2) from the correct lines of their F(x) allow ft on their 4 th line or correct use of f(x) or area e.g. $\frac{1}{2} \times \frac{7}{10} \times 0.8 + 1 \times \frac{1}{4} + \frac{1}{2} \times \frac{21}{40} \times 0.1$	e
	A1	For $\frac{89}{160}$ oe or awrt 0.556 NB: Use of F(3.1) with $\frac{1}{8}(2x-1)$ for $2 < x$? 3 gives scores M0A0	s 0.555 and

Question Number		Scheme	Marks
6 (a)	Box A:	$P(1) = \frac{1}{4}$ $P(2) = \frac{3}{4}$ Box B: $P(2) = \frac{1}{5}$ $P(5) = \frac{4}{5}$	B1
	Totals (7	5, 6, 8, 9, 11, 12	B1
	(1, 2, 2)	(1, 2, 5) $(1, 5, 5)$ $(2, 2, 2)$ $(2, 2, 5)$ $(2, 5, 5)$	D1
		[(1, 5, 2)] [(2, 5, 2)]	DI
	$\left[\mathbf{P}(T=5)\right]$	$[P(T=6)=]\frac{1}{4}\times\frac{1}{5}\times\frac{1}{5}\left[=\frac{1}{100}\right] \qquad [P(T=6)=]\frac{3}{4}\times\frac{1}{5}\times\frac{1}{5}=\left[\frac{3}{100}\right]$	
		$[\mathbf{p}(T_{1}, 0), 1_{2}, 3_{1}, 1_{2}, 4_{1}, 2_{4}]$	M1
	$\left[P(I=8)\right]$	$P(I=9) = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{5} \times \frac{1}{5} = \frac{1}{100}$	M1
	r		1011
	P(T=1)	$1) = \left \frac{1}{4} \times \frac{1}{5} \times \frac{1}{5}\right = \left \frac{10}{100}\right \qquad \left P(T=12) = \right \frac{1}{4} \times \frac{1}{5} \times \frac{1}{5} = \left \frac{10}{100}\right $	M1
			-
	t $\mathbf{P}(T-t)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\Gamma(I-i)$	$\frac{1}{100} \frac{3}{100} \frac{8}{100} = \frac{2}{25} \frac{24}{100} = \frac{6}{25} \frac{16}{100} = \frac{4}{25} \frac{48}{100} = \frac{12}{25}$	Al
			(7)
(b)	<i>m</i> = 2	m = 5	B1
	$\left[\mathbf{P} \left(M = \right) \right]$	$2) = \left] \frac{1}{100} + \frac{8}{100} + \frac{3}{100} + \frac{24}{100} = \left[\frac{36}{100} \right]$	M1
	$\left[\mathbf{P}(M =$	5) =]' $\frac{16}{100}$ '+' $\frac{48}{100}$ ' = $\left[\frac{64}{100}\right]$ or P(M=5)=1-'P(M=2)'	M1
	m		
	P(M = n)	n) 36 64	A1
			(4)
()	D4	Notes	Total 11
(a)	BI	All 4 correct probabilities – may be seen in an equation	<u></u>
	BI	All 6 totals correct with no extras (ignore units if stated) (condone 8 or 9 listed twice All 6 basic combinations correct either seen or used (implied by the 3 rd M1 mark))
	B 1	Condone any permutation of the 6 basic combinations for this mark	
	M1	Correct method for one probability (ft their probabilities)	
	M1	Correct method for five probabilities (ft their probabilities)	
	M1	Correct method for all six probabilities (ft their probabilities)	
(b)	AI R1	Each both values of m (no extras). If $m = 1$ is stated it must be stated that its probability	viel
		Ft part (a) For a correct method to find $P(M = 2^{\circ})$	y 15 U
	M1	For this mark there must only be 2 probability calculations	
	M1	Ft part (a) For a correct method to find $P(M = 5)$	
	1711	For this mark there must only be 2 probability calculations	
	Al	cao Need not be in a table but probabilities must be attached to the correct total	

Question Number		Scheme	Marks
7 (a)	$\frac{1}{2} \times 8 \times 4d$	$a = 1 \Rightarrow a = \frac{1}{16} * \text{ or } \int_{[0]}^{[4]} ax dx = 0.5 \Rightarrow \left[\frac{ax^2}{2}\right]_0^4 = 0.5 \Rightarrow a = \frac{1}{16} *$	B1*
			(1)
(b) (i)	(By sym	metry) $b = -\frac{1}{16}$	B1
(ii)	At (8, 0)	$0 = -\frac{1}{16} \times 8 + c \Rightarrow c = \frac{1}{2} \text{ or at } (4, 0.25) \ 0.25 = -\frac{1}{16} \times 4 + c \Rightarrow c = \frac{1}{2}$	M1 A1
			(3)
(c)	$\mathrm{E}(X) = 4$	k	B1
	$\mathrm{E}(X^2) =$	$\int_{0}^{4} x^{2} \left(\frac{1}{16}x\right) dx + \int_{4}^{8} x^{2} \left(-\frac{1}{16}x + \frac{1}{2}\right) dx$	M1
	= -	$\frac{1}{64} \left[x^4 \right]_0^4 + \left[-\frac{1}{64} x^4 + \frac{1}{6} x^3 \right]_4^8$	Alft
	= 4	$4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right] \left[= \frac{56}{3} \right]$	dM1A1
	Var(X) =	$=\frac{56}{3}-4^2=\frac{8}{3}$ *	A1*
			(6)
(d)	$\frac{1}{2} \times Q_1 \times \frac{1}{1}$	$\frac{1}{6} \times Q_1 = \frac{1}{4} \text{or} \int_0^{Q_1} \frac{1}{16} x dx = 0.25 \to \frac{Q_1^2}{32} = 0.25$	M1
	$Q_1 = \sqrt{8} =$	= 2.828 or $Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 or awrt 5.17	A1
	$Q_{1} = \sqrt{8} =$	= 2.828 and $Q_2 = 8 - \sqrt{8} = 5.171$ awrt 2.83 and awrt 5.17	A1
			(3)
(e)	50% lies	between Q and Q	(5)
(0)	2070 1105		
	Statisticia	an's claim: $P\left(\frac{4'-\sqrt{\frac{8}{3}}}{\sqrt{\frac{8}{3}}} < X < 4' + \sqrt{\frac{8}{3}}\right) = P(2.37 < X < 5.63)$	M1
	as this is	outside Q_1 and Q_3 , > 0.5/ statistician's claim is correct*	
	or		A1*
	P(2.37 <	(X < 5.63) = 0.6498 > 0.5 / statistician's claim is correct*	
			(2)
		Notes	Total 15
		Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{2}$, integration, use	of
(a)	B1 *	2 2 $16gradients, etc.Answer is given so a complete correct method with no incorrect working must be seen$	
(b)	B 1	Cao	
	M1	Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x-8)$ or use of integration or any valid	d method
	A1	Cao correct answer scores M1A1	

(c)	B1	For $E(X) = 4$ This may be seen at any point in the solution		
	M1	For use of $\int x^2 f(x) dx$ $x^n \to x^{n+1}$ for both parts of pdf (ignore limits) ft their values of b and c		
	A1ft	For correct integration of either of the 2 parts, ft their values of <i>b</i> and <i>c</i>		
	depM1	For use of correct limits in either part (dep on previous M1) may be implied by sight of 4 or $\frac{44}{3}$ but not implied by $\frac{56}{3}$		
	A1	For complete correct substitution $4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right]$ or $\frac{56}{3}$ allow $= 4 + \frac{44}{3}$		
	A1*	Answer is given so need to see use of $Var(X) = E(X^2) - E(X)^2 = \frac{8}{3}$ with values substituted		
		For correct method for either Q_1 or Q_3		
(d)	M1	e.g. $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4}$, $\int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$		
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe or awrt 5.17 allow $8 - \sqrt{8}$ oe		
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe and awrt 5.17 allow $8 - \sqrt{8}$ oe		
(e)	M1	For use of $P(\mu - \sigma < X < \mu + \sigma)$ ft their μ implied by awrt 2.37 and awrt 5.63		
	A1*	* Must state that this > 0.5 as it is outside Q_1 and Q_3 Allow '2.83' > '2.37' and '5.16' < '5.63' or a correct probability calculated awrt 0.65 Answer is given so no incorrect working can be seen. If their values are not consistent with the statistician's claim, then A0 here.		