Question Number		Scheme	Marks				
1 (a)	[Mean =] 2.95						
	$[Variance =] \frac{2091}{180} - ("2.95")^2$						
		$= 2.914$ ($s^2 = 2.930$) awrt 2.91 (2.93)	A1				
			(3)				
(b)	The me	ean is close to the variance					
(c)	W~ Po	(3)	(1)				
(i)	_	(3) = 1 - P(W, 2) = 0.5768 awrt 0.577	M1 A1				
(ii)	$\left[P(4 < $	$\langle W < 8 \rangle = P(W, 7) - P(W, 4) \text{ or } P(W=5) + P(W=6) + P(W=7)$	M1				
		= 0.1728 awrt 0.173	Al				
		- 0.1/28 awit 0.1/5	(4)				
(d)	X~N(2	1 21)	B1				
(u)			DI				
	$\left[P(X \cdot $	$< 19 = P \left(Z , \frac{18.5 - 21}{\sqrt{21}} \right) = -0.5455 $ or					
		(-23.5-21)	M1M1A1				
	[P(X)]	$> 23) =]P(Z \dots \frac{23.5 - 21}{\sqrt{21}}) = 0.5455]$					
	= 0.2912 (calc 0.29268)*						
(e)		12 "0 20")	(5) M1				
(0)	$\frac{Y \sim B(13, "0.29")}{\left[P(Y=5)=\right]^{13}C_5 ("0.29")^5 (1-"0.29")^8 = 0.170465 \text{ (calc } 0.17317)} \text{ awrt } 0.17$						
	$\begin{bmatrix} \Gamma(I=5) = \end{bmatrix} C_5(0.29) (I=0.29) = 0.170405 (calc \ 0.17517) \qquad and for the formula in the formula of the formula in the formula in the formula of the formula in the formula in the formula of the formula in the formula of $						
		Notes	(3) Total 16				
(a)	B1	cao allow exact equivalents	10000110				
	M1	Ft their mean. Using $\frac{\sum fx^2}{180} - (\text{their mean})^2 \text{ or } \frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$					
		Allow with a square root – may be implied by awrt 1.71					
	A1cso	awrt 2.91 (2.93)					
(b)	B1	cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close'	e values				
(c)(i)	M1 for $1-P(W_{1}, 2)$ or $1-0.4232$						
	A1	awrt 0.577					
(::)		for $P(W, 7) - P(W, 4)$ or $P(W=5) + P(W=6) + P(W=7)$					
(ii)	M1	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216					
	A1	awrt 0.173					
(d)	B1	for writing or using N(21,21). May be seen in a standardisation expression.					
		M1 for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 23, 23.5, 24, 24.5					
	M1						
	M1	for using 19 ± 0.5 or 23 ± 0.5					
	M1 A1	for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546					
	M1	for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen					
(e)	M1 A1	for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$	3				
(e)	M1 A1 A1*	for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^5$ ft their 0.29 (Must be 2 sf or better). Condone B(0.29, 13)	3				
(e)	M1 A1 A1*	for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$	3				

Question Number	Scheme					
2 (a)	$\left[P(D < 108) = \right] P\left(Z < \frac{108 - 112.4}{\sigma} \right) = 0.05$					
	$\Rightarrow \frac{108}{2}$	$\frac{3-112.4}{\sigma} = -1.6449$	M1 M1			
		$\sigma = 2.6749 \text{ days} (\text{calc } 2.67501)$ awrt 2.67/2.68	A1 (2)			
(b)	$J \sim B$	(25, 0.05)	(3)			
	$\left[P(J \dots 4) = \right] 1 - P(J \dots 3) = 1 - 0.9659$					
		= 0.0341 (calc 0.034090) awrt 0.0341	A1 (2)			
(c)	$T \sim Po[200 \times "0.0341"] = 6.82$ (calc 6.8181)					
	$\left[P(T \dots 2) = \right] 1 - P(X, 1) = 1 - \left(e^{-"6.82"} + e^{-"6.82"} \times "6.82" \right)$					
		$= 0.99146 \operatorname{calc}(0.99144)$ awrt 0.991	dA1			
(a) (i)	M1	Notes for standardisation using 108(Condone 107.5), 112.4 and σ set equal to z where $1.5 < z $	Total 8			
(a) (1)			~2.5			
	M1	for correct equation awrt –1.6449 (Allow awrt 1.6449 if compatible with their equation) awrt 2.67/2.68				
	A1	NB M1 M0 A1 is possible				
(b)	M1	M1 for $1 - P(J, 3)$ or $1 - 0.9659$				
	A1	A1 awrt 0.0341				
(c)	M1	for writing or using correct Poisson model ft their part (b) May be implied by 0.00853(73				
	N/1	for writing or using $1 - (e^{-\lambda^{"}} + e^{-\lambda^{"}} \times \lambda^{"})$ where $1 < \lambda < 200$ (may be implied by awrt 0.991)				
	M1	Allow $1-P(X, 1)$ if Poisson distribution is stated or used				
		dep on both method marks being awarded awrt 0.991				
	dA1	(NB Binomial gives awrt 0.992 and if no working shown awrt 0.992 will gain M0M0A0 Allow 0.9915 if both M marks are awarded)			

Question Number		Scheme Mar					
3 (a)	The vacuum tubes shatter independently						
		pability of a vacuum tube shattering is constant	B1 B1				
			(2)				
(b)	$C \sim B(1)$	5,0.35) plus $[P(C_{,,},9] =]0.0142 \text{ or} [P(C_{}10) =]0.0124 \text{ or}$	M1				
(0)	$\left[\mathbb{P}(C, \mathbf{x}) \right]$	9) =]0.9876	1011				
	Critical	regions $[0, ,] C, , 1$ or $10, , C [, , 15]$	M1				
	[0,,] C	$C_{,,1}$ and 10 , $C_{,,15}$ plus	A 1				
	P(C ,, 9	$P(C \dots 10) = 0.0142 \text{ and } P(C \dots 10) = 0.0124$	A1				
			(3)				
(c)	0.0266		B1ft				
(1)	F 4		(1)				
(d)	[4 is not	in the CR therefore] there is no evidence to reject Rowan's belief	B1ft (1)				
(e)	<i>F</i> ~B(40	0.35)	(1)				
	· · · · · · · · · · · · · · · · · · ·	0.35 and $H_1: p < 0.35$	B1				
	P(F, , 8) = 0.0303 or CR F, 8						
	-	It evidence to reject H_0 or significant or 8 lies in the Critical region	M1A1 M1				
		sufficient evidence to support that the proportion of type <i>B</i> vacuum tubes that	A1				
	shatter when exposed to alternating high and low temperatures is less than 35%						
		Notes	Total 12				
(a)	B1	for one correct reason which must mention tube(s) and shatter/shattering or 2 correct reasons not in context					
	B 1	for 2 correct reasons which must mention tube(s) and shatter/shattering at least once					
(b)	M1	M1 for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988					
		Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is seen					
	M1	for lower CR or C, 1 oe e.g. $C < 2$ M1 or upper CR $C \dots 10$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR					
		Do not allow CR written as a probability statement					
	A 1	for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I	Do not				
	A1	allow CR written as a probability statement					
(c)	B1ft	for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical register. If no probabilities for their CR given then the answer must be 0.0266	gions" if				
		for a correct statement consistent with their CR Must mention Rowan/his/her or a cor	rect				
(d)	B1ft	conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence	ce to				
(u)	DIII	suggest that the proportion/probability/number/amount (allow 35% as proportion)	of tubes				
(a)	B1	that shatter has changed oefor both hypotheses correct in terms of p or π					
(e)	M1	for using or writing $P(F, 8)$ or awrt 0.0303					
	A1	for awrt 0.0303 or correct CR Allow $F_{,,}$ 8 or $F < 9$ but not if part of a probability sta	tement				
		for a correct conclusion – need not be in context. If their probability or CR. Ignore hyp					
	M1	do not allow contradicting non contextual comments. May be implied by a correct com					
		statement on its own	1 1				
	1	for a correct conclusion – must be in context, with words highlighted in bold. ft their p	robability				
	A1	or CR only. Independent of hypotheses. Do not allow contradicting statements. Allow					

Number		
4 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
(b)	$\begin{bmatrix} P(G_{,,} 2) =]1 - 2 \times \frac{3}{20} [= 0.7] \text{ or } \frac{1}{2} \times 3 \times \left(\frac{2}{15} + \frac{1}{3}\right) \text{ or } \frac{1}{15} \int_{-1}^{2} (g+3) dg [= 0.7] \text{ or} \\ \frac{1}{30} \times 2^{2} + \frac{1}{5} \times 2 + \frac{1}{6} [= 0.7] \\ \text{or} \\ \begin{bmatrix} P\left(G_{,,} \frac{1}{2}\right) \end{bmatrix} = \frac{1}{2} \times 1.5 \times \left(\frac{2}{15} + \frac{3.5}{15}\right) [= 0.275] \text{ or } \frac{1}{15} \int_{-1}^{0.5} (g+3) dg [= 0.275] \text{ or} \\ \frac{1}{30} \times 0.5^{2} + \frac{1}{5} \times 0.5 + \frac{1}{6} [= 0.275] \\ \text{or} \\ \begin{bmatrix} P\left(\frac{1}{2}, G_{,,} 2\right) = \end{bmatrix} \frac{1}{2} \times 1.5 \times \left(\frac{7}{30} + \frac{1}{3}\right) [= 0.425] \text{ or } \frac{1}{15} \int_{0.5}^{2} (g+3) dg [= 0.425] \text{ or} \\ \frac{1}{30} \times (2^{2} - 0.5^{2}) + \frac{1}{5} \times (2 - 0.5) [= 0.425] \end{bmatrix}$	(2) M1
	$\begin{bmatrix} P(1,, 2G,, 6 G,, 2) = \end{bmatrix} \frac{P\left(\frac{1}{2}, G, 2\right)}{P(G,, 2)} = \frac{0.425}{0.7} \text{ or } 1 - \frac{0.275}{0.7} \text{ oe}$ $= \frac{17}{28} \text{ or } 0.607$ awrt 0.607	M1M1
	$-\frac{1}{28}$ or 0.007	
(c)	$\left[E(H^2) = \right] 2.4 + 12^2 \left[= 146.4 \right]$	(4) M1
	$\left[E(G) = \right] \int_{-1}^{2} \frac{1}{15} \left(g^2 + 3g \right) dg + \int_{2}^{4} \frac{3}{20} g dg$	M1
	$\left[E(G) = \right] \left(\frac{1}{15} \left(\frac{1}{3}g^3 + \frac{3}{2}g^2 \right) \right)_{-1}^2 + \left(\frac{3}{40}g^2 \right)_{-1}^4$	M1
	$=\frac{1}{15}\left(\frac{8}{3}+\frac{12}{2}+\frac{1}{3}-\frac{3}{2}\right)+\left(\frac{48}{40}-\frac{12}{40}\right)[=1.4]$	dM1
	$\left[E(2H^2 + 3G + 3) = \right] 2 \times "146.4" + 3 \times "1.4" + 3$	M1
	= 300	A1 (6) Total 12

		Notes					
(a)	M1	for correct shape $\left(g = \frac{3}{20} \text{ must be below } \frac{1}{3}\right)$ with the lines not joining at $x = 2$ and none below/touch the x -axis. Ignore any broken/dotted lines drawn					
	A1	for fully correct graph with labels on the x axis					
(b)	(b) M1 For a correct method to find P(G, 2) or P $\left(G, \frac{1}{2}\right)$ or P $\left(\frac{1}{2}, G, 2\right)$ May be implied by $0.7/\frac{7}{10}$ or $0.425 = \frac{17}{40}$ or $0.275/\frac{11}{40}$						
	M1	for $\frac{p}{0.7}$ where $0 or \frac{0.425}{q} where 0.425 < q < 1 or 1 - \frac{0.275}{r} where 0.275 < r < 1Allow un-simplified probabilities$					
	M1	For $\frac{P(\frac{1}{2}, G, 2)}{P(G, 2)}$ or a correct ratio of probabilities					
	A1	$\frac{17}{28}$ oe or awrt 0.607					
(c)	M1	for a correct method to find $E(H^2)$					
	M1	for realising $\int x f(x) dx$ on both functions and adding together. Ignore limits					
	M1	for attempting to integrate $(x^n \rightarrow x^{n+1})$ at least one part of $xf(x)$					
	dM1	dep on previous M1 being awarded. For use of correct limits in one part of $xf(x)$ If working not shown, then this may be implied by 0.5 or 0.9 or 1.4. If integration is incorrect then working must be shown.					
	M1	For using $2 \times$ "their $E(H^2)$ "+ 3" their $E(G)$ +3, provided $E(H^2)$ and $E(G)$ have been shown. NB You may have to check their answer if no working is shown for $2 \times$ "their $E(H^2)$ "+ 3" their $E(G)$ +3					
	A1	Cao					

Question Number		Scheme					
5(a)	$\frac{\left(a+6\right)^2}{12} = 27$						
	$a = \sqrt{27}$	$\overline{\times 12} - 6 \Rightarrow 12^*$ or $a^2 + 12a - 288 = 0 \Rightarrow a = 12^*$	A1*				
			(2)				
(b)(i)	$\frac{12-b}{18} =$	$\frac{3}{5}$ or $\frac{b+6}{18} = \frac{2}{5}$	M1				
	10	b = 1.2	A1				
			(2)				
(ii)	P(-6 < W	$V < "0.6") = \frac{"0.6"+6}{18}$	M1				
		$=\frac{11}{30}$ or 0.3666	A1ft				
			(2)				
(c)	Let C be	the point where the wood is cut and x is the distance AC					
	$\frac{x}{2}$ and $\left(\frac{160-x}{2}\right)$ $L+W=80$ and $LW=975$						
	$\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130 \qquad L(80 - L) = 975 \implies L = 15 \text{ or } 65$						
	$P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe } \left[P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe } \right]$						
	$=\frac{5}{8}$ oe						
		Notes	Total 10				
(a)	M1 for setting up the correct equation. Do not allow verification						
	A1*	for an un-simplified expression for <i>a</i> leading to $a = 12$ or for a correct $3TQ = 0$ leading Condone any letter for <i>a</i>	g to $a = 12$				
(b)(i)	M1	for setting up the correct equation					
	A1	Cao oe					
(ii)	M1	for a correct method. Do not ISW					
	A1ft	ft their value for <i>b</i> , provided the answer is between 0 and 1					
(c)	M1						
	3.54	May be implied by a correct equation for the area					
	M1 for a correct equation for area in terms of any letter. Condone an inequality						
	dM1 dep on previous method mark awarded. For a fully correct method ft their x values provid to 160 or 80 Do not ISW						
	A1 Cao						

Question Number	Scheme						Marks
6(a)	8, 11, 14, 17, 20				M1		
	[P(even	$=$] $\frac{1}{5}$ and [P(odd	$=]\frac{4}{5}$				M1
	$\Big[P \Big(X = 8 \Big]$	$\left[4 \right] = \left[\left(\frac{4}{5} \right)^4 \text{ or } \left[P(2) \right] \right]$	$K = 20) = \left] \left(\frac{1}{5}\right)^2$	ŀ			M1
	$\left[P(X=1) \right]$	$1) =]4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3$	or $\left[P(X=17) \right]$	$=$] $4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)$) ³		M1
	$\Big[P \Big(X = 1 \Big]$	$4) = \int {}^{4}C_{2} \times \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$	$\left(\frac{4}{5}\right)^2$				M1
	X	8	11	14	17	20]
	P(X=x)		$\frac{256}{625}$ (0.4096)	$\frac{96}{625}$ (0.1536)	$\frac{16}{625}$ (0.0256)	$\frac{1}{625}$ (0.0016)	A1
							(6)
(b)	$1 - (1 - "0.1536")^n > 0.95$ or $("0.8464")^n < 0.05$					M1	
	$n > 17.96$ or $n > \frac{\log(0.05)}{\log("0.8464")}$ or $n > \log_{"0.8464"}(0.05)$					M1	
	<i>n</i> = 18						A1
							(3)
(a)	M1	Ear at least 2 second	No		maat		Total 9
(a)	M1 M1	For at least 2 scores				ity	
	M1	for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probability					
		for p^4 where $0 for 4 \times (1 - p) p^3 where 0$					
	M1	for $4 \times (1-p) p^3$ where 0					
	M1	for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least 2 but not more than 5)$					
	A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total					a table but	
(b)	M1	for using $1-(1-P(Y=0))^n > 0.95$ allow = instead of $>/\geq$. condone $ or allow for at least 2$					
	trials for <i>n</i> between 10 and 20 ft their $P(X=14)$						
	M1 for $n > awrt 17.96$ or $n > \frac{\log(0.05)}{\log("0.8464")}$ ft their 0.8464 or $n > \log_{"0.8464"}(0.05)$ ft					t their	
	TAT	0.8464 or for the tw					
	Allow = instead of $>/>$. condone $ May be implied by a correct answer ft their 0.$).8464	
	A1 Cao (Do not allow any inequality for this mark)						

Question Number	Scheme					
7(a)	$f(x) = [k](a + 3bx^2 - 4x^3)$				M1	
	[k](6bx	$-12x^{2})=0$			M1	
	9 <i>b</i> -27	$=0 \Rightarrow b=3 \text{ or } 6 \times 3$	$3 \times 1.5 - 12 \times 1.5^2 = 0 \Longrightarrow \therefore b = 3$	3 *	A1*	
					(3)	
(b)	a+3-1	$-4 = 0$ oe $[\Rightarrow a =$	2]		B1*	
					(1)	
(c)		$k(2 \times$	$2+3\times 2^3-2^4-4\Big)=1 \left[\Rightarrow k\right]$	$r = \frac{1}{8}$	M1	
		F(x) = 0.5	$\mathbf{F}(x) = 4$	$\mathbf{F}(x) = 0$		
	× ×	(4) = 0.3988 (5) = 0.5078	F(1.4) = 3.1904 F(1.5) = 4.0625	F(1.4) = -0.8(096) F(1.5) = 0.06(25)	M1A1	
	0.39	9<0.5<0.508	3.1904 < 4 < 4.0625	-0.8(096) < 0 < 0.06(25)		
		re, the median lies veen 1.4 and 1.5	therefore, the median lies between 1.4 and 1.5	therefore, the median lies between 1.4 and 1.5	A1	
	ALTERNATIVE M1A1A1 for $F(x) = 0$					
	$x_1 = 2.91$ $x_2 = 1.49$ $x_3 = -0.70$ So $x = 1.49$ as $1 \le x \le 2$					
	1.4 < 1.49 < 1.5 [therefore, the median lies between 1.4 and 1.5]					
		(4)				
		1	Notes		Total 8	
(a)	M1		fferentiate $x^n \to x^{n-1}$ Condone		2 nd M1)	
	M1		ntiating twice and equating to ze			
	A1*		leading to a correct linear equation in $C(1) = 0$ to form an equation in $C(1) = 0$		whatitution of	
(b)	B1 *	b=3	F(1) = 0 to form an equation in a	(May be seen in part (a)) and s	substitution of	
(c)	M1	1 for using $F(2) = 1$ to form a correct equation in terms of k only. May be seen in any part of the question				
	M1 For a calculation of $F(1.4)$ or $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or be (Allow $F(1.4) = awrt 3.190k$ or $F(1.5) = awrt 4.063k$)					
	A1	For a calculation of $F(1.4)$ and $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or better)				
	dA1	words e.g. For $F(X) = 0$ a comment about a change in sign implies a comparison with 0				
		ALTERNATIVE				
	M1	For solving the given equation. May be implied by 2.91 or 1.49 or -0.70				
	A1	For $x = 1.49$ identified as being in the range specified by the CDF. May be implied by rejecting the other solutions				
	dA1	Dependent on previ	ous A1. For a correct compariso	on and conclusion		

Examples of other acceptable comparisons for 0.5

F(1.4) < 0.5 < F(1.5), Median lies between the range

 $F(1.4) \le F(median) \le F(1.5)$, so median lies between 1.4 and 1.5

 $F(1.4) \le F(Q2) \le F(1.5)$, therefore Q2 lies between 1.4 and 1.5

F(1.4) < F(m) < F(1.5), 1.4 < m < 1.5

F(1.4) < 0.5, F(1.5) > 0.5, so median of X lies between 1.4 and 1.5

Allow equivalent comparisons for 4 and 0