Question Number	Scheme	Marks	
1. (a)(i)	$X \sim B(50, 0.4)$ P(X = 26) = 0.9686 - 0.9427 or ⁵⁰ C ₂₆ (0.4) ²⁶ (0.6) ²⁴ awrt <u>0.0259</u>	M1 A1 (2)	
(ii)	$P(X \ge 26) = 1 - P(X \le 25)$ = 1 - 0.9427 = awrt <u>0.0573</u>	M1 A1	
(iii)	(From tables) $k = \underline{19}$	(2) B1 (1)	
(b)(i)	$J \sim N(240, 144)$ (222.5.240)	M1A1 (1)	
	$P(X \le 222) \sim P(J < 222.5) = P\left(Z < \frac{222.5 - 240}{\sqrt{144}}\right)$	M1M1	
	P(Z < -1.46) = 1 - 0.9279 = awrt 0.0721 - 0.0724	A1 (5)	
(ii)	n is large (oe) and p is close to 0.5	(5) B1	
		(1) [11 marks]	
	Notes		
(a)(i)	M1 Use of tables or ${}^{50}C_{26}(p)^{26}(1-p)^{24}$ with $0 allow alternative notations for {}^{50}C_{26}$		
(ii)	A1 awrt 0.0259 (correct answer scores 2 out of 2) M1 writing or using $1 - P(X \le 25)$		
(iii)	A1 awrt 0.0573 (calc 0.0573437) (correct answer scores 2 out of 2) B1 19 cao $k \leq 19$ or $k \geq 19$ is B0		
(b)(i)	1 st M1 For writing or using N(240,) (May be seen in standardisation) 1 st A1 For writing or using N(240, 144) (May be seen in standardisation) 2 nd M1 use of continuity correction 222 ± 0.5		
	3^{rd} M1 $\pm \left(\frac{222 \text{ or } 222.5 \text{ or } 221.5 - their mean}{their sd}\right)$ if distribution not clearly stated,		
	then the mean and sd must be correct in the standardisation to score this mark 2 nd A1 awrt 0.0721 through to awrt 0.0724 (calc 0.0723743) Answer in the range implies all previous marks unless clearly comes from wrong method [NB: Use of binomial distribution gives 0.0719]		
(ii)	B1 both conditions required for <i>n</i> is large allow in words e.g. 'sample is large' allow 0.4 in place of <i>p</i> condone ' $n > 30$ ' (or any number > 30) Ignore comments about <i>np</i>		

Question Number	Scheme	Marks	
2. (a)	e.g. Population is small	B1	
		(1)	
(b)(i)	list/register/database of all members (of the leisure centre)	B1	
(ii)	A member (of the leisure centre)	B1	
		(2)	
(c)	C is the statistic as it is (a quantity) based only on <u>values</u> (oe) taken	B1	
	from the sample/it contains no unknown parameters/population	(1)	
	values		
		[4 marks]	
	Notes		
(a)	B1 any correct characteristic of the population that makes a census a practical		
(b)(i)	alternative to a sample (accessible, finite, well-defined) B1 idea of list (oe) <u>and</u> idea of all members (e.g. list of each member of the leisure centre))		
(ii)	B1 a single member		
	Condone members Also condone One of the members in the sample The opinion/view of one of the members is B0		
(c)	B1 choosing C (or clearly identifying C in words) only with a correct supporting reason which must include value (oe) and sample <u>or</u> no unknown parameters For values allow e.g. information, observations, calculations, function, numerical data, etc.		

Question Number	Scheme	Marks
3. (a)	$\int_{2}^{5} \frac{1}{48} \left(x^2 - 8x + c \right) dx = 1$	M1
	$1 = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + cx \right]^5$	M1
	$1 = \frac{1}{48} \left(\left(\frac{5^3}{3} - 4(5^2) + 5c \right) - \left(\frac{2^3}{3} - 4(2^2) + 2c \right) \right) \underline{\text{or}} 48 = 39 - 84 + 3c$ $(\Rightarrow 3c = 93 \Rightarrow)c = 31^*$	A1cso* (3)
(b)	$P(2 < X < 3) = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + 31x \right]_2^3$	M1
	$\frac{1}{48} \left(\left(\frac{3^3}{3} - 4(3^2) + 31(3) \right) - \left(\frac{2^3}{3} - 4(2^2) + 31(2) \right) \right) = \frac{13}{36} (=\text{awrt } 0.361)$	A1
(c)	Less than 3 since " $\frac{13}{36}$ " > 0.25	(2) B1 (1)
(d)	x = 4 leads to the minimum/lowest value of $f(x) / f(x)$ is a positive	B1
(e)	quadratic Considers $x = 2$ and $x = 5$ by e.g.	(1) M1
	• $f(2) = 0.39(583) [= \frac{19}{48}]$ and $f(5) = 0.3 [= \frac{16}{48}]$ (so $f(2) > f(5)$)	1011
	• Sketch of $f(x)$ from $x = 2$ to $x = 5$	
	• $x = 2$ is further than $x = 4$ (then $x = 5$) Mode is $x = 2$	A1
	Node is $x - 2$	(2)
	Notes	[9 marks]
(a)		
(b)	M1 for use of integration of $f(x) \ x^n \to x^{n+1}$ with correct limits 2 and 3 (ft from their (a)) A1 allow awrt 0.361 (correct answer scores 2 out of 2)	
(c)	B1 less than 3 with correct reasoning. May use their part (b), but must be consistent with 'less than 3' If the lower quartile is found awrt 2.67, allow $LQ/2.67 < 3$	
(d)	B1 correct reason why the method does not give the correct mode. Allow a sketch of	
(e)	f(x). Also allow, e.g. 'Kei's method did not consider the end-points' M1 considers end-points	
	A1 mode is 2 cao Answer only scores M0A0. Must have some justificat	10n.

Question Number	Scheme	Marks	
4. (a)	<i>p</i> is small	B1	
(b)	Let $N =$ number of candles not suitable for sale	(1)	
	$N \sim B(125, 0.02)$	M1	
	$\approx C \sim \text{Po}(2.5)$ P(C ≤ 6)	A1 M1	
		Al	
	= 0.9858 awrt <u>0.986</u>	(4)	
(c)(i)	$H_0: p = 0.05$ $H_1: p < 0.05$	B1	
	$D \sim B(30, 0.05)$	M1	
	P(D=0) = 0.2146	A1 M1	
	Do not reject H_0 / not significant	1411	
	The <u>manufacturer</u> 's claim is not supported/There is not enough evidence to suggest that the <u>proportion</u> (oe) of candle <u>holders</u> with	A1	
	minor defects is less than 5%/ Charlie's claim is supported	(5)	
(ii)	Impossible to reject H_0 (since $P(D=0) > 0.05$)	B1	
	0.0550 = 0.0760 = 1 or $V D(50, 0.05) D(V = 0)$ (is still) > 0.05	(1)	
(d)	0.95^{50} [=0.0769] <u>or</u> X~B(50, 0.05), P(X = 0) (is still) > 0.05 (so still not possible to reject H ₀) hence Ashley's change does not	M1 A1	
	make the test appropriate.	(2)	
	make the test appropriate.	[13 marks]	
	Notes		
(a)	B1 correct condition allow 'p is close to 0' allow ' $p < 0.1$ ' or any value less than		
	0.1 (condone $np < 10$ or $np \leq 10$)		
(b)	1 st M1 recognising Binomial distribution (may be implied by Po(2.5))		
	1^{st}A1 correct distribution Po(2.5) 2^{nd}M1 writing equation $P(C \leq C)$ from Deisson distribution		
	2^{nd} M1 writing or using P($C \le 6$) from Poisson distribution 2^{nd} A1 awrt 0.986 from correct distribution used (calc : 0.9858126)		
	[NB : Use of binomial gives 0.98678] Answer only 0.9858 or bett		
	out of 4, but answer of 0.986 must see Po(2.5) to award full marks.		
(c)(i)	B1 correct hypotheses in terms of p or π		
	1^{st} M1 writing or using B(30, 0.05) (may be implied by 1^{st} A1)		
	1 st A1 awrt 0.215		
	2^{nd} M1 a correct ft statement consistent with their <i>p</i> -value and 0.05 No context		
	needed but do not allow contradicting non contextual comments.		
	2^{nd} A1 correct conclusion in context which must be not rejecting H ₀ .		
	Must use underlined words (oe) No hypotheses then A0		
	Condone e.g. '5% of candle holders have minor defects'		
(ii)	B1 correct reasoning which implies there is no critical region/ H_0 cannot	ot be rejected	
	Sample size is too small on its own is B0.		
(d)	M1 for 0.95^{50} or for X~B(50, 0.05) and P(X=0) > 0.05		
(")	A1 test is (still) not appropriate with M1 scored		
	AT test is (still) not appropriate with MT scored		

Question Number	Scheme	Marks	
	$F(3) = 0 \rightarrow \frac{1}{16} (3^2 - 6(3) + a) = 0$	M1	
	$16^{(1)}$ $a = 9$	A1	
	$F(10) = 1 \rightarrow \frac{1}{12} (100(10) - (5)10^2 + c) = 1$	M1	
	c = 188	A1 (4)	
(b)	$\frac{1}{16} (5^2 - 6(5) + "9") = \frac{1}{12} (5+b) \qquad \qquad \frac{1}{12} (9+b) = \frac{1}{12} (100(9) - 5(9^2) + "-488")$	M1	
	16 12 12 12 $b = -2$	Al	
(c)	$P(6 < Y \leq 9) = F(9) - F(6)$	(2) M1	
	$P(6 < Y \leq 9) = F(9) - F(6)$ = $\frac{1}{12}(9 + "-2") - \frac{1}{12}(6 + "-2")$	M1	
	$=\frac{1}{4}$	A1 (3)	
(d)	$f(y) = \frac{1}{12}$	(5) B1	
		(1)	
	$E(6Y-5) = [26.5+] \int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$	M1	
	$= [26.5+]\frac{1}{12}[(3y^2-5y)]_5^9$ = 26.5+ $\frac{1}{12}[(3(9^2)-5(9))-(3(5^2)-5(5))]$	dM1	
		dM1	
	$=\frac{233}{6}$	A1 (4)	
		[Total 14]	
(a)	Notes $1^{\text{st}} \text{ M1 writing or use of F(3)} = 0$		
()	$1^{\text{st}} \text{A1} a = 9 \text{ cao}$		
	2^{nd} M1 writing or use of F(10) = 1 2^{nd} A1 c = -488 cao		
(b)	M1 use of F(5) = F(5) $[=\frac{1}{4}]$ or F(9) = F(9) $[=\frac{7}{12}]$ ft their values from (a)		
	A1 $b = -2$ cao 1st M1 services $F(0) = F(0)$ (mass he implied by 2nd M1)		
(c)	1 st M1 writing or using $F(9) - F(6)$ (may be implied by 2 nd M1) 2 nd M1 substituting 9 and 6 into $F(r)$ with their value of <i>h</i>		
	2^{nd} M1 substituting 9 and 6 into F(x) with their value of b allow $\frac{1}{12}(100(9)+5(9^2)+"-488")-\frac{1}{12}(6+"-2")$ with their value of b and their value of c		
	A1 $\frac{1}{4}$ oe		
(d)	B1 $\frac{1}{12}$		
(e)	1 st M1 use of $\int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$ (ignore limits)		
	$_{5}^{5}$ 2 nd M1 (dep on 1 st M1) attempt to integrate $(6y - 5)''\frac{1}{12}''$ with at least one $y^{n} \rightarrow y^{n+1}$		
	3^{rd} M1 (dep on 1^{st} M1) 26.5 + $\int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$		
	A1 awrt 38.8		
SC:	Answer only or correct answer not using given information scores M0M1M1	A1	

Question Number	Scheme	Marks	
6. (a)	$P(17 < W < k) = P(W < k) - P(W < 17) = \frac{53}{60} - \left(1 - \frac{1}{5}\right) = \frac{1}{12}$	M1 A1 (2)	
(b)(i)		(2)	
	$\frac{(b-a)}{12} = 75$, $\frac{b-a}{b-a} = \frac{1}{5}$ or $\frac{b-a}{b-a} = \frac{1}{5}$	B1, B1	
	$\frac{(b-a)^2}{12} = 75 , \qquad \frac{b-17}{b-a} = \frac{1}{5} \text{or} \frac{17-a}{b-a} = \frac{4}{5}$ $\frac{(b-a)^2}{12} = 75 \rightarrow (b-a) = 30 \qquad \qquad \frac{b-17}{30} = \frac{1}{5}$	M1	
	b = 23 and $a = -7$	A1	
(ii)	$P(W < k) = \frac{k - ("-7")}{"23" - ("-7")} = \frac{53}{60} \text{ or } P(17 < W < k) = \frac{k - 17}{30} = \frac{1}{12} \text{ or } P(W > k) = \frac{"23" - k}{"23" - ("-7")} = \frac{7}{60}$	(4) M1	
	<i>k</i> = 19.5	A1	
(c)	P(5 < W < 5) = 5 - (-5) = 1	(2)	
	$P(-5 < W < 5) = \frac{5 - (-5)}{"23" - ("-7")} = \frac{1}{3}$	M1A1ft (2)	
(d)	$E(W^2) = Var(W) + E(W)^2 = 75 + \left(\frac{"23"+"-7"}{2}\right)^2 = 139$		
	L(n') = n + L(n') = n + (-2)	M1 A1 (2)	
	Notes	[Total 12]	
(a)	M1 for writing or using $P(W < k) - P(W < 17)$ allow $< \text{ or } \le$		
	Allow equivalent expressions e.g. $P(W > 17) - P(W > k) = \frac{1}{5} - \left(1 - \frac{53}{60}\right)$		
	A1 oe condone awrt 0.0833 condone $\frac{1}{12}$ coming from $\frac{13}{12} - 1$ or $\left -\frac{1}{12} \right $		
(b) (i)	1 st B1 correct equation for variance 2 nd B1 either correct probability equation Allow e.g. <i>k</i> in place of $(b - a)$ 1 st M1 eliminating $(b - a)$ which must appear in both equations. A1 both $b = 23$ and $a = -7$ correct answers imply all 4 marks		
(ii)	M1 probability expression using uniform distribution ft their values A1 $k = 19.5$ oe cao		
(c)	M1 for $10/(\text{their } b - \text{their } a)$		
	A1ft $\frac{1}{3}$ oe condone awrt 0.333 (Allow ft $\frac{10}{their(b-a)}$ as exact fraction or evaluated to		
(d)	3sf or better provided $a < -5$ and $b > 5$) M1 use of $E(W^2) = Var(W) + (E(W))^2$ with values substitued for $Var(W)$ and $E(W)$		
	If their values of a and b allow any rearrangement. Must have a correct (ft) expression or value for $E(W)$		
	Also allow $\int_{-\pi}^{\pi} \frac{1}{\pi^2 3^n - \pi^{-7^n}} w^2 dw$		
	A1 139 cao		

Question Number	Scheme		Marks
7. (a)	$R \sim Po(8)$ P(4 \le R \le 8) = P(R \le 8) - P(R \le 3) = 0.5925 - 0.0424 = 0.5501 = awrt <u>0.550</u>		B1 M1 A1
(b)	$H \sim \text{Po}(4)$ $P(H \leq 2) = 0.2381$ $Y \sim B(5, "0.2381")$ $P(Y = 2) = {}^{5}C_{2}("0.2381")^{2}(1 - "0.2381")^{3}$ $= 0.25073 = \text{awrt } 0.251$		(3) B1 B1 M1 M1 A1 (5)
(c)	W = number sold in first fifteen minutes X = number sold in last forty five minutes	F = number of muffins sold in first 15 minutes	(5)
	$P(W > X R = 4) = \frac{P(W = 4)P(X = 0) + P(W = 3)P(X = 1)}{P(R = 4)}$ $= \frac{\frac{e^{-2}2^{4}}{4!} \frac{e^{-6}6^{0}}{0!} + \frac{e^{-2}2^{3}}{3!} \frac{e^{-6}6^{1}}{1!}}{\frac{e^{-8}8^{4}}{4!}}$	$F \sim B(4, 0.25)$ P(F > 2) = P(F = 3) + P(F = 4) = ⁴ C ₃ (0.25) ³ (0.75) + 0.25 ⁴	M1 M1 M1
		- (awrt 0.0508 or awrt 0.0509)	A1 (4) [Total 12]
	Notes		
(a)	B1 writing or using Po(8) (may be implied by one correct probability from 0.5925, 0.0424 0.4530 or 0.0996) M1 writing or using $P(R \le 8) - P(R \le 3)$ A1 awrt 0.550 (calc: 0.55016) correct answer scores 3 out of 3		
(b)	1 st B1 writing or using Po(4) 2 nd B1 awrt 0.238 1 st M1 choosing binomial distribution with $n = 5$ and their p 2 nd M1 ${}^{5}C_{2} p^{2}(1-p)^{3}$ with $0A1 awrt 0.251$		
(c)	1 st M1 attempt at either correct product $P(W = 4)P(X = 0)$ or $P(W = 3)P(X = 1)$		
	from $W \sim Po(2)$ and $X \sim Po(6)$ implied by awrt 0.0902×awrt 0.0025 or awrt 0.180×awrt 0.0149 or awrt 0.0029 2 nd M1 conditional probability with P($R = 4$) from $R \sim Po(8)$ on denominator implied by awrt 0.0573 seen in the denominator of a probability expression 3 rd M1 complete expression for the required probability implied (awrt 0.0902×awrt 0.0025+awrt 0.180×awrt 0.0149)/awrt 0.0573 for 3 rd M1		
	A1 allow awrt 0.0508 or awrt 0.0509 from use of tables		
ALT	1 st M1 identifying B(4, 0.25) 2 nd M1 P($F = 3$) + P($F = 4$) from B(4, 0.25) 3 rd M1 4 $p^3q + p^4$ from B(4, 0.25)		