Question Number	Scheme					
1 (a)	$X = $ faults in a week $\Rightarrow X \sim Po(6)$					
	$[\mathbf{P}(X \geqslant x$	$[P(X \ge x) = 0.1528 \Longrightarrow P(X \le x - 1)] = 0.8472$				
	Using tab	les $P(X \leq 8) = 0.8472 \Longrightarrow x - 1 = 8$	M1			
	<i>x</i> = 9		A1			
			(3)			
(b)	Y = faults	in six weeks \Rightarrow <i>Y</i> ~ N(36,36)	B1			
	P(Y < 32)	2) = P $\left(Z < \frac{31.5 - 36}{6}\right) \left[= P\left(Z < -0.75\right)\right]$	M1 M1			
	= 0.2266	awrt 0.227	A1			
			(4)			
(c)	W = Num	ber of poor weeks $\Rightarrow W \sim B(50, 0.1528)$	B1			
	$\left \left[\mathbf{P}(W > 1 \right] \right.$	$1)] = 1 - P(W \leqslant 1)$	M1			
	= 1 - (0.8)	$3472^{50} + 50 \times 0.1528 \times 0.8472^{49}$	dM1			
	= 0.99748	awrt 0.997	A1			
		Notes	Total 11			
1 (a)	M1	Writing or using $1 - P(X \le x - 1)$				
	<u>M1</u>	For 0.8472 May be implied by $x - 1 = 8$				
(1)	Al	x = 9				
(b)	BI	writing or using $N(36, 36)$ (May be implied by a correct standardisation expression	n)			
	M1	Standardising with $30.5/31/31.5/32/32.5/39.5/40/40.5/41/41.5$, their mean and stand (Allow ±)	lard deviation			
	M1	A fully correct standardisation. May be implied by ± 0.75				
	Al	awrt 0.227				
(c)	B1	Writing or using B(50,0.1528)				
	M1	Writing or using $1 - P(W \le 1)$ (Allow any letter)				
		Dependent on using binomial. $H = \begin{bmatrix} P(W = 0) + P(W = 1) \end{bmatrix}$ (1) 11 11 11 10 007 0 0075 1 10 007	0057			
	dM1	Using $1 - [P(W = 0) + P(W = 1)]$ (implied by awrt 0.997 or 0.9975 or 1 - awrt 0.00)257)			
	U1¥11	Using binomial may be implied by $(1-p)^{50} + {}^{n}C_{r} \times p \times (1-p)^{49}$ where p is a pro-	bability			
		Condone ${}^{n}C_{r}$ missing				
	A1	awrt 0.997 or 0.9975				

Question Number		Scheme	Marks			
2 (a)	$f(x) = \begin{cases} \\ \end{cases}$	$ \frac{1}{4k} -k \leqslant x \leqslant 3k $ 0 otherwise	M1 A1			
			(2)			
(b)	[E(X)] =	k k	B1			
			(1)			
(c)	$[\operatorname{Var}(X)]$	$] = \frac{(3kk)^2}{12} = \frac{16k^2}{12} \text{or} \left[\frac{x^3}{3} "f(x)"\right]_{-k}^{3k} - ("k")^2$	M1			
	$=\frac{4k^2}{3}*$		A1* cso			
			(2)			
(d)	$E(X^2) =$	$Var(X) + E(X)^{2} = \frac{4k^{2}}{3} + ("k")^{2}$	M1			
	$=\frac{7k^2}{3}$		A1			
	$E(3X^2)$	$E(3X^{2}) = 3E(X^{2}) = 3 \times \frac{7k^{2}}{3} = 7k^{2}$ A1				
	(3)					
		Notes	Total 8			
2 (a)	M1	For the 1 st line of the pdf including the inequality, allow use of < instead of one/both	\leq signs			
	A1	Fully correct, allow use of \leq instead of one/both \leq signs. Allow equivalent for the 0	otherwise.			
(b)	B 1	Cao				
(c)	M1	M1 Use of Var(X) = $\frac{(\beta - \alpha)^2}{12}$ or $\left[\frac{x^3}{3} "f(x)"\right]_{-k}^{3k} - ("k")^2$				
	A1* cso	Answer is given. Correct solution only with no incorrect working.				
(d)	M1	Use of $E(X^2) = Var(X) + E(X)^2$ ft their $E(X)$ or $\left[\frac{x^3}{3} f(x)\right]_{-k}^{-k}$ this integration may be seen in part (c) or part (d)				
	A1	$\frac{7k^2}{3}$ (This must be seen in part (d)) May be implied by $7k^2$)				
	A1	Cao				

Question		Scheme	Marks		
3 (a)	We can assume breakdowns are [rare], independent events occurring at a constant rate.				
<i>c</i> (<i>u</i>)			(1)		
(b)	H ₂ $\cdot \lambda =$	8 H. $\cdot \lambda \neq 8$	B1		
(0)	110		(1)		
(a)	$X \sim Po($	8)	(1)		
(0)	$\frac{1}{D(V < 2)}$	(0.0128 so = B(V < 2) = 0.0424 so	N/1		
	$P(X \leq 2)$	$P(X \le 3) = 0.0424$ de	MI		
	$P(X \ge 14)$	$P(X \ge 15) = 0.0342$ oe $P(X \ge 15) = 0.0173$ oe	M1		
	$X \leqslant 2 \cup Z$	$X \ge 15$ oe	A1		
			(3)		
(d)	"0.0138"	+ "0.0173"	M1		
	="0.0311	"	Alft		
			(2)		
(e)	"[4 is] not	t in the critical region"	M1		
	So there is	s insufficient evidence that refurbishment has changed the mean breakdown rate	Al		
		Neter	(2) Tatal 0		
		Notes	10tal 9		
3 (a)	B 1	needed) context		
(b)	B 1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ .			
(a)	М1	Use of $Po(8)$ to find the lower critical value. May be implied by either 0.0138 or 0.042	24 or		
(C)	IVII	$X \leqslant 2$ if no probabilities shown (Calculator values: 0.01375 and 0.04238)			
	Use of Po(8) to find the upper critical value. May be implied by 0.0342 or 0.0173 or 0.9658 or				
	M1	0.9827 or $X \ge 15$ if no probabilities shown (Calculator values: 0.03418 and 0.0172)	5 and		
		0.96581 and 0.98274)			
		$X \le 2$ or $[\cup]X \ge 15$ or Condone the use of and/or Do not allow as probability statements			
	Al	Allow [0, 2] or [0, 3) and [15, ∞] or [15, ∞) or (14, ∞] or (14, ∞)			
(d)	M1	Adding the two probabilities for their critical region			
	A1ft	0.0311 Allow 3.11 or awrt 3.1[0] or awrt 0.031[0] ft their critical region			
		NB 3.11 or 0.0311 or awrt 3.1[0] or awrt 0.031[0] will score 2/2			
(a)	M1	A correct statement ft their critical region e.g. Do not reject H ₀ /Accept H ₀ /not significa	nt – no		
(e)	IVII	context needed but do not allow contradicting non contextual comments			
	A1	Correct conclusion in context. Must include rate/number of breakdown (Allow decreas	ed for		
		changed)			
		NB Award M1 A1 for a correct contextual statement on its own			

Question Number		Scheme	Marks	
	[f(x)]			
4 (a)	k		B1	
. (4)			B1	
		3 6 10 [x]	(2)	
	$\frac{1}{-}(3+9)$	$k = 1$ or $\frac{1}{-}(3-1)k + (6-3)k + \frac{1}{-}(10-6)k = 1$		
(b)	2	2 7^3 1 Γ 2 7^{10}	M1	
	or $\frac{1}{2}k\left[\frac{x}{2}\right]$	$\frac{x^{-}}{2} - x \Big _{1} + k \Big[x \Big]_{3}^{6} + \frac{1}{4} k \Big[10x - \frac{x^{-}}{2} \Big]_{6} = 1$		
	$k = \frac{1}{\epsilon} *$		A1* cso	
	0		(2)	
(c)	$\int_1^x \frac{1}{12} (x - $	(1) dx or $\int \frac{1}{12} (x-1) dx$ and using F(1) = 0	M1	
	$\int_{3}^{x} \frac{1}{6} dx + \frac{1}{6$	"F(3)" or $\int \frac{1}{6} dx$ and using "F(3) = $\frac{1}{6}$ "	M1	
	$\int_{6}^{x} \left(\frac{5}{12} - \frac{1}{24}x\right) dx + "F(6)" \text{ or } \int \left(\frac{5}{12} - \frac{1}{24}x\right) dx \text{ and using either "}F(6) = \frac{2}{3} \text{ "or } F(10) = 1$			
	0	x < 1		
		$\frac{1}{24}\left(x^2 - 2x + 1\right) \qquad \qquad 1 \leqslant x \leqslant 3$	Aloe	
	$F(r) = \int_{-1}^{2} \frac{1}{1}$	$-(x-2)$ $3 < x \le 6$	Aloe	
	$\left[\frac{1}{x} \right]^{-} 6$	$(10)^2$	A1 oe	
	4	$\frac{1}{18} \left(20x - x^2 - 52 \right) \text{ or } 1 - \frac{(10 - x)}{48} 6 < x \le 10$	B1	
	[1	<i>x</i> > 10		
			(7)	
(d)	$P(X > E(X)) = 1 - F\left(\frac{61}{12}\right) = 1 - 0.51388 = 0.4861$ awrt 0.486			
(-)	Since (d) <	< 0.5 [the mean is greater than the median] therefore positive (skew)	M1 A1ft	
(e)	or follow through their sketch in part (a)			
		Notes	Total 15	
4(a)	B1	Correct shape. Must start and end on the <i>x</i> axis		
	B1	Fully correct including 1, 3, 6, 10 and k. Allow $\frac{1}{6}$ for k Ignore labels for x and f(x) a extras e.g. $\frac{k}{2}$	and any	
(b)	M1	Setting up the area of the trapezium = 1 or 2 triangles + a rectangle = 1 or a fully correct integration including limits = 1		
	A1* cso	Answer is given. Correct solution only with no incorrect working		
L	111 630	1 monor to grout. Contest solution only with no meenfect working.		

(c)	M1	For a correct method to find the 2^{nd} line Allow in terms of k

		1
	M1	For a correct method to find the 3 rd line, ft their F(3). If using + c method then ft their F(3) = $\frac{1}{6}$
		Allow in terms of k
	M1	For a correct method to find the 4 th line, ft their F(6). If using + c method then ft their F(6) = $\frac{2}{3}$
		Allow in terms of k
	A1	2^{nd} line correct including inequality. Allow < instead of \leq
	A1	3^{rd} line correct including inequality. Allow < instead of \leq
	A1	4^{th} line correct including inequality. Allow < instead of \leq
	P1 1 st and 5 th line correct. Allow "otherwise" for the range on the 1 st or 5 th line but not both.	
	DI	lines must be in terms of the same letter.
(d)	M1	For use of $1 - F\left(\frac{61}{12}\right)$ using the their line of $F(x)$ for $3 < x \le 6$. May use integration/area
		methods
	A1	awrt 0.486 Allow ³⁵ / ₇₂
(e)	M1	For correctly comparing part (d) with 0.5 (may be implied by a correct comparison of mean and
(0)		median (5)) do not allow mean is greater than the median on its own
	A 1 ft	For positive skew or ft their answer to part (d) Accept "no (or negligible) skew" following a
	AIII	reason that "mean \approx median" Allow argument based on sketch in part (a)

Question Number		Scheme	Ma	rks
5 (a)	B(n, 0.045	$\overline{\mathcal{D}}$	B1	
		,		(1)
(h)	Applicant	s are independent (no identical twins) or the proportion/probability identified as colour	D1	
(0)	blind does	s not change over time	DI	
				(1)
(c)	B(120, 0	$.045) \Rightarrow Po(5.4)$	B1	
		$e^{-5.4} \times 5.4^5$	3.61	
	P(X = 5)	$1 = \frac{1}{5!}$	MI	
	= 0.1728	awrt 0 173	A1	
	0.1720.			(3)
(d)	Binomial	with large <i>n</i>	B1	(-)
	and very s	mall <i>p</i>	B1	
		· · · · · · · · · · · · · · · · · · ·		(2)
(e)	$H_0: p =$	0.75 $H_1: p \neq 0.75$	B1	
	B(96, 0.7	$(75) \Rightarrow N(72.18)$	B1	
	67.5	-72 $r+0.5-72$		
	$Z = \frac{07.5}{L}$	$\frac{1}{10}$ or $\frac{x \pm 0.5}{10}$	M1	
	√.	18 √18	ļ	
	= -1.0606	6 or $\frac{x+0.5-72}{2} < -1.96$ or $\frac{x-0.5-72}{2} > 1.96$	Δ1	
	1.0000	$\sqrt{18}$ $\sqrt{18}$ $\sqrt{18}$	111	
	P(z < -1)	.06) = 0.1444 / 0.1446 or CR < 63.2 awrt 0.144 or 0.145	A1	
	There is in	nsufficient evidence to reject H _o	dM1	
	Insufficier	at evidence against Jaymini's claim	Δ1	
	msumerer		111	(7)
ALT	Let <i>p</i> be the	ne probability of an applicant fail to become a pilot.		
	$H_a: n =$	0.25 H : $p \neq 0.25$	B1	
	P(06, 0)	$(25) \rightarrow N(24.18)$	D1	
	D(90, 0.2)	24	DI	
	$Z = \frac{28.3}{2}$	$\frac{-24}{-24}$ or $\frac{x \pm 0.5 - 24}{-24}$	M1	
		<u></u>		
	- 1 06066	x + 0.5 - 24 $x - 0.5 - 24$ $x - 0.5 - 24$		
	- 1.00000	$\sqrt{18}$ $\sqrt{18}$ $\sqrt{18}$ $\sqrt{18}$	AI	
	P(z > 1.0)	(6) = 0.1444 / 0.1446 or CR > 32.8 awrt 0.144 or 0.145	A1	
	There is in	nsufficient evidence to reject H _o	dM1	
	Insufficier	at evidence against Jaymini's claim		
	msumere			(7)
		Notes	Tota	al 14
5 (a)	B1	For binomial with correct parameters <i>n</i> and 0.045		
		For one of the given reasons. Must have context Allow equivalent statements Do not al	llow	
(b)	B1	number for proportion/probability		
(c)	B1	Using or writing Po(5.4)		
		$e^{-\lambda}\lambda^5$		
	M1	For $\frac{1}{5!}$ with any value for λ		
	A1	awrt 0.173		
		NB A correct answer with no incorrect working scores 3/3		
(d)	B1	<i>n</i> is large (Allow number of trials for n)		

	B1	p is small (Allow probability for p)		
(e)	B1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁		
	B1	For writing or using N(72, 18) (May be implied by a correct standardisation expression)		
	M1	Standardising using 67.5 or 67 or 66.5 or $x \pm 0.5$ with their mean and standard deviation (Allow		
	IVII	±)		
	A 1	awrt -1.06 (may be implied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96		
	AI	(ignore incorrect inequality symbol and allow =)		
	A 1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$		
	AI	Using a critical region route: $CR < 63.2$		
	dM1	Dependent on M1 A1. A correct statement - no context needed but do not allow contradicting		
	ulvii	non contextual comments. (Ignore any comparisons)		
		Correct conclusion in context. Must include the word claim.		
	A1	If they give an answer that refers to the claim then they must include the words applicants (oe),		
		and pilots. No hypotheses then A0		
		NB Award M1 A1 for a correct contextual statement on its own		
ALT	B 1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁		
	B1	For writing or using N(24, 18) (May be implied by a correct standardisation expression)		
	M1	Standardising using 28.5 or 29 or 29.5 or $x \pm 0.5$ with their mean and standard deviation (Allow		
	IVII	$\pm)$		
	A 1	awrt 1.06 (may be applied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96		
	AI	(ignore incorrect inequality symbol and allow =)		
	A 1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$		
	AI	Using a critical region route: CR < 32.8		
	dM1	Dependent on M1 A1. A correct statement - no context needed but do not allow contradicting		
	ulvii	non contextual comments. (Ignore any comparisons)		
		Correct conclusion in context. Must include the word claim.		
	A1	If they give an answer that refers to the claim then they must include the words applicants (oe),		
		and pilots. No hypotheses then A0		
		NB Award M1 A1 for a correct contextual statement on its own		

Question Number		Scheme	Marks		
	A sampling distribution is all the values of a statistic (obtained from a random sample) and				
6 (a)	the associated probabilities or the probability distribution of the statistic (under random sampling)				
	of the probability distribution of the statistic (under random sampling).				
(b)	$P(6) = \frac{1}{11}$ $P(7) = \frac{1}{11}$ $P(8) = \frac{1}{11}$				
	Totals (T)	12, 13, 14, 15, 16	B1		
	(6, 6)(6, 7)(7, 7)	7) (6, 8) 7) (7, 8)	B1		
	(8, 6) (8,	7) (8, 8)			
	$\left[\mathbf{P}(T=1)\right]$	$2) = \int \left[\left(\frac{6}{11} \right)^{n^2} = \left[\frac{36}{121} \right] \right]$			
	$\left[\mathbf{P}(T=1)\right]$	$3) =]2 \times \left[\left(\frac{6}{11}\right)^{n} \times \left(\frac{3}{11}\right)^{n}\right] = \left[\frac{36}{121}\right]$	M1		
	$\left[\mathbf{P}(T=1)\right]$	$4) =]2 \times \left[\left(\frac{6}{11}\right)^{n} \times \left(\frac{2}{11}\right)^{n} + \left(\frac{3}{11}\right)^{n}\right] = \left[\frac{33}{121}\right]$	M1		
	$\left[\mathbf{P}(T=1)\right]$	$5) = \left]2 \times \left[\left(\frac{3}{11}\right)\right] \times \left[\left(\frac{2}{11}\right)\right] = \left[\frac{12}{121}\right]\right]$	M1		
	$\left[\mathbf{P}(T=1\right]$	$6) = \left[\left[\frac{2}{11} \right]^{2} = \left[\frac{4}{121} \right] \right]$	-		
	Т	12 13 14 15 16	A 1		
	P(T=t)	$\frac{36}{121}$ $\frac{36}{121}$ $\frac{33}{121}$ $\frac{12}{121}$ $\frac{4}{121}$	A1 (7)		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
(c)	$\mathrm{E}(T) = "$	$12"\times"\frac{36}{121}"+"13"\times"\frac{36}{121}"+"14"\times"\frac{35}{121}"+"15"\times"\frac{12}{121}"+"16"\times"\frac{1}{121}"$	M1		
	$=\frac{1606}{1000}$	$=\frac{146}{13272}$	A1		
	121	11 awrt 13.3	(2)		
		Notes	Total 10		
6 (a)	B1	A correct explanation with the words in bold			
(b)	B1	Correct probabilities – may be seen in an equation or implied by a correct probability	for $T = 14$		
	B1	B1 All 5 totals correct with no extras			
	B1	B1 All 6 basic combinations correct, either seen or used (may be implied by correct probailities)			
	M1	Correct method for one probability ft their P(6), P(7) and P(8) If these are not stated then they			
	1711	must be correct			
	M1	Correct method for three of the five probabilities ft their P(6), P(7) and P(8) If these are not stated then they must be correct			
	МЛ	Correct method for all five probabilities ft their P(6), P(7) and P(8) If these are not stated then			
	they must be correct or 5 probabilities that add up to 1				
	A1	A1 cao Need not be in a table but probabilities must be attached to the correct total			
(c)	M1	Use of $\sum t P(T = t)$ two or more products ft their table			
	A1	awrt 13.3 (Allow $\frac{146}{11}$ oe)			

Question Number		Scheme			
7 (a)	$P(L \ge 4$	$\overline{(.5)} \Rightarrow P(A \ge 20.25)$			
	$P(A \ge 2$	$4 \ge 20.25) = (30 - 20.25) \times \frac{1}{20}$			
	= 0.4875				
				(2)	
(b)	$\operatorname{Var}(L) =$	$= \mathrm{E}(L^2) - \mathrm{E}(L)^2$			
	$[E(L^2) =$	$\mathrm{E}(A)] = 20$		B1	
			$g(L) = \begin{cases} \frac{L}{10} & \sqrt{10} \leq L \leq \sqrt{30} \\ 0 & \text{otherwise} \end{cases}$		
	$E(L) = E(\sqrt{A}) = \frac{1}{20} \int_{10}^{30} \sqrt{a} dA$		$E(L) = \frac{1}{10} \int_{\sqrt{10}}^{\sqrt{30}} L^2 dL$	M1	
	$=\frac{1}{20}\left[\frac{2}{3}\right]$	$a^{\frac{3}{2}} \bigg]_{10}^{30}$	$\frac{1}{10} \left[\frac{l^3}{3} \right]_{\sqrt{10}}^{\sqrt{30}}$	A1	
	= 4.4231.		A1		
	Var(L) =	"20"-("4.4231") ²			
	= 0.4358.	awrt 0.436			
		No	tes	Total 8	
7 (a)	M1	$(30-20.25) \times \frac{1}{20}$			
	A1	cao (Allow 0.488 or $\frac{39}{80}$)			
(b)	B1	For 20			
	M1	Attempt to integrate $\frac{1}{20}\int_{10}^{30}\sqrt{a} dA$ or $\frac{1}{10}\int_{\sqrt{10}}^{\sqrt{30}}L^2 dL$ Ignore limits and accept any letter			
	A1	Fully correct integration. Accept any letter. Must have limits			
	A1	4.42 or better			
	M1	Use of $\operatorname{Var}(L) = \operatorname{E}(L^2) - \operatorname{E}(L)^2$ ft their $\operatorname{E}(L^2)$ and $\operatorname{E}(L)$ provided $\operatorname{Var}(L) > 0$			
	A1	awrt 0.436			