Question Number	Scheme			Marks
Th	roughout the paper the candidates may use different letters to the ones given in the mark schem			
1. (a)	[$X \sim$ the number of pansy seeds that do not germinate or $Y =$ the numberthat <u>do</u> germinate]			
	$X \sim B(20, 0.05)$ or $Y \sim B(20, 0.95)$			B1
(1)	$P(X \le 4) - P(X \le 2) = 0.9974 - 0.9$	245 <u>or</u>		
	$\begin{pmatrix} 20\\ 3 \end{pmatrix} 0.0$	$5^{3} \times 0.95^{17} + {20 \choose 4} 0.05^{4} \times 0.95^{16}$	= 0.05958+ 0.01332	M1
	= 0.072909		awrt 0 0729	A1
(ii)	$P(X \le 1)$ or $P(Y \ge 19)$	$= 20 \times (0.95)^{19} (0.05) + (0.95)^{2}$	20	M1
	= 0.7358	= 0.735839	awrt 0736	A1 (5)
			<u></u>	(0)
(b)	[Let W = no. of packets where $Y >$	18] $P(W=5) = ("0.7358$.") ³	M1
		= 0.21573	awrt <u>0.216</u>	A1
				(2)
(c)	${ m H}_0: p=0.05 ~~{ m H}_1: p > 0.05$			B1
				(1)
(d)	$[V = n_0]$ of seeds that do not germing	$V_{\rm e} = V_{\rm e} \mathbf{R}(100, 0.05)$ approxim	ates to $V \sim P_0(5)$	M1 A 1
	V = 1000 of seeds that do not germina	CR for 1-tail in (c)	$\frac{CR}{CR} \text{ for } 2 \text{ tail in } (c)$	IVITAT
	$P(V \ge 8) = 1 - P(V \le 7)$	$P(V \ge 9) = 0.0681$	$P(V \ge 10) = 0.0318$	M1
	= 1 - 0.8666	$P(V \ge 10) = 0.0318$	$P(V \ge 11) = 0.0137$	1111
	= 0.1334	$\frac{1}{(V)} = 10 0.0510$ $CR V \ge 10 \text{ oe}$	$\frac{1}{(V \ge 11)} = 0.0157$ $CR \ V \ge 11 \text{ oe}$	A1
	Accept H_0 or not significant or 8 of	does not lie in the critical region	1	dM1
	Data consistent with Spany's claim	or Insufficient evidence for.	<i>lem's</i> belief	Alcso
	or insufficient evidence that perce	ntage of seeds not germinating	g is more than 5% (o.e.)	(6) Total 14
	Notes			10tal 14
(a)	B1: writing or using B(20,0.05) [4]	Allow $Y \sim B(20, 0.95)$ if Y is cle	arly defined]. Implied by 1 corr	ect prob.
(i)	M1: for $P(X \leq 4) - P(X \leq 2)$ and	one correct prob. or $P(X=3)$	P(X=4) and 1 correct prob	
(ii)	M1: for $P(X \leq 1)$ or $[20] \times (0.95)$	$(0.05)^{19} (0.05) + (0.95)^{20}$ - condone n	nissing 20	
(b)	M1: for $(\text{their}(a)(ii))^5$			
(c)	B1: both hypotheses correct with <i>p</i> of	or π		
(d)	1 st M1: for realising a Poisson approximation is appropriate. NB Po(95) is M0A0			A0
	1 st A1: writing or using $V \sim Po(5)$ i.	e correct mean for the Poisson.		
	2nd M1: for writing or using $1 - P($	$V \leqslant 7$) or $P(V \leqslant 7) = 0.8666$		
	<u>or</u> writing $P(V \ge 10) = 0.03$	$18 \text{ or } P(V \ge 9) = 0.0681 \text{ or}$	$P(V \ge 11) = 0.0137$ leading to	a CR.
	Implied by correct CR or pr 2^{nd} A1 : for awrt 0,133 or $V > 10$ of	obability = awrt 0.133 (e.g. $V > 9$) or $V > 11$ or al	low any letter but CR must mat	ch part(c)
	2 AI: for awr 0.155 or $V \ge 10$ or (e.g. $V \ge 9$) or $V \ge 11$ or allow any letter but UK must match part(c) 3rd dM1 : dep on 2 nd M1 ft their CB or probability. A correct statement based on comparing 8 with their CP			
	or their prob with 0.05 or 0.025 [condone 0.866<0.95]– contradicting non-contextual comments M0			
	3 rd A1 cso: all previous marks must be awarded. A correct statement in context. Need Bold words.			
	NB award M1A1 for a correct contextual statement on its own. If there are no hypotheses or they are the wrong way around then $3^{rd} M0.3^{rd} A0$			
	Normal approximation: Award marks in pairs with 2, 4 or 6 marks available			
SC1	Sight of N(5 or 95, $\sqrt{4.75}^2$) M1A1; probability awrt 0.125/6 M1A1; Correct contextual concl' dM1A1			
SC2	No approximation: Use of B(100,	0.05) M0A0; probability awrt	0.128 or CR \geq 10 M1A1; the	n M0A0

Question Number	Scheme			
2. (a)	[X = number of faults in 4 m ² so $X \sim Po(3)$]			
	$P(X=5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153] \text{or} \frac{e^{-3}3^5}{51} (\text{allow } \lambda \text{ instead of } 3)$	M1		
	= 0.1008 or 0.100818 awrt <u>0.101</u>	A1		
		(2)		
(b)	[Y = number of faults in 6 m ² so] Y ~Po(4.5) and $[P(Y > 5)] = 1 - P(Y \le 5)$ [= 1 - 0.7029]	M1		
	= 0.2971 <u>or</u> (calc) 0.29706956 awrt <u>0.297</u>	A1		
		(2)		
(c)	$\underline{0.101}$ (or ft their answer to (a))			
	Faults occur independently/ randomly			
(d)	$F =$ number of faults in a small rug $F \sim Po(0.9)$	B 1		
(u)	$e^{-"0.9"}n \times 80 + (1 - e^{-"0.9"})n \times 60 \ge 4000$ or $(awrt 0.407)n \times 80 + (awrt 0.593)n \times 60 \ge 4000$	M1		
	$n \ge \frac{1}{20e^{-"0.9"} + 60} = 58.71$	MI		
	n = 59	A1 (4)		
(8)	$R \sim Po("0.9" \times 10)$ and $[P(R \ge 13)] = 1 - P(R \le 12)$ [= 1 - 0.8758]	BI		
	$P(R \le 13) = 0.9261$ or $P(R \ge 14) = 0.0739$ or $P(R \le 14) = 0.9585$ or $P(R \ge 15) =$	M1		
	0.0415 [P(R > 13)] = 0.1242 awrt 0.124 or CR R > 15 (oe)	A 1		
	so insufficient evidence to reject H_0 /not significant/ not in critical region	M1		
	There is insufficient evidence that the rate at which faults occur is higher for Rhiannon	A1 (5)		
		(5) Total 15		
	Notes			
(a)	M1: for using or writing $P(X \leq 5) - P(X \leq 4)$ or $\frac{e^{-\lambda^3}}{5!}$ (Accept letter λ or any value of	λ)		
(b)	M1: writing or using Po(4.5) and sight of $\lceil P(Y > 5) \rceil = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7029$			
(c)	2nd B1: for a comment about faults occurring randomly/independently or Poisson has " no memory "			
(d)	B1: writing or using $Po(0.9)$ May be implied by sight of 0 407 or 0 593			
	1 st M1: for $e^{-\lambda}n \times 80 + (1 - e^{-\lambda})n \times 60 > 4000$ any value for λ . Allow = 4000			
	2nd M1: for solving their equation leading to a positive value of n . Allow any value of λ and all A1: for an answer of 59 only	ow <i>n</i> =		
(e)	B1: both hypotheses correct with λ or μ . Allow 3 or 0.75 or 0.9 instead of 9			
	1st M1: for writing or using Po("9") and writing or using $1 - P(R \le 12)$ (implied by $1 - 0.8758$) or one of: P($R \le 13$) = 0.9261, P($R \ge 14$) = 0.0739, P($R \le 14$) = 0.9585, P($R \ge 15$) = 0.0415 leading to a			
	CR 1 st A1: for probability = awrt 0.124 or CR of $R \ge 15$ oe e.g. $R > 14$			
	2 nd M1: for a correct conclusion based on their prob & 0.05 <u>or</u> their CR & 13. Assume correct hy Do not allow contradicting conclusions	ypotheses.		
	2 nd A1: dep on both Ms for a correct contextual comment including the words in bold.			

Question Number	Scheme		
3. (a)	12/25 - 6/25 -	M1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 (2)	
(b)	$\frac{d\left(\frac{3}{50}\left(4y^2 - y^3\right)\right)}{dy} = \frac{3}{50}\left(8y - 3y^2\right)$	M1	
	$\frac{3}{50}(8y-3y^2)=0$; $y=\frac{8}{3}$ oe	M1; A1	
(c)	$E(Y^{2}) = \int_{1}^{2} \left(\frac{6}{25}y^{3} - \frac{6}{25}y^{2}\right) dy + \int_{2}^{4} \left(\frac{12}{50}y^{4} - \frac{3}{50}y^{5}\right) dy$	M1	
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^7 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^7$	A1	
	$= \left[\left(\frac{8}{25} \right) - \left(-\frac{1}{50} \right) \right] + \left[\left(\frac{1024}{125} \right) - \left(\frac{112}{125} \right) \right] ; \qquad = \frac{1909}{250} \text{or} \underline{7.636} \text{or} \underline{7.64}$	dM1; A1	
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^2$	(4) M1	
	= 0.367584 awrt <u>0.368</u>	A1 (2)	
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \text{or} \int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$	M1	
	$\left \frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \frac{6}{25} \left[\left(\frac{x^2}{2} - x\right) + \frac{1}{2} \right] = 0.1 \underline{\text{or}} \frac{6}{50}(x-1)^2 = 0.1$	A1	
	$(y-1)^2 = \frac{5}{6}$ or $y=1\pm\sqrt{\frac{5}{6}}$; $y=1.9128$ awrt <u>1.91</u>	dM1; A1	
	Notos	(4) Total 15	
(a)	M1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes bel A1: for $6/25$, $12/25$, 1, 2 and 4 and must not go beyond 4 or < 1 [Can allow "freehand" straight 1	low <i>x</i> - axis ine]	
(b)	1 st M1: for attempting to differentiate $y^n \rightarrow y^{n-1}$ for $n = 2 \text{ or } 3$		
	2nd M1: for equating their differential (\neq f(y)) to zero and an attempt at solving so must reach y = A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If y = 0 is seen it must be rejected.		
(c)	1 st M1: for using $\int y^2 f(y)$ for both parts, <u>and</u> an attempt at integration (some $y^n \to y^{n+1}$) Ignore limits.		
	 1st A1: for correct integration for both parts. Ignore limits. 2nd dM1 : dep on 1st M1 for adding the 2 parts together <u>and</u> substituting the correct limits in to each part. 2nd A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration. 		
(d)	M1: for "their part(c)" -2.696^{2} A1: for awrt 0.368		
(e)	1 st M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$ and some integration and sub' of 1 and	nd <i>x</i>	
	 1st A1: for a correct equation in any form 2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correc 2nd A1: for awrt 1.91 (second solution should be rejected) 	t answer.	

S2_2021_06_MS

Question Number	Scheme			Marks	
4.	[A = the number on the ball] $P(A=1) = \frac{2}{9}$ $P(A=2) = \frac{1}{3}$ $P(A=5) = \frac{4}{9}$			B1	
(i)	Possible samples with a range of 4 are: $(1,1,5)$ $(1,2,5)$ $(1,5,5)$			M1	
	$(1,1,5) \frac{2}{9} \times \frac{2}{9} \times \frac{4}{9} \times 3 = \frac{16}{243} \qquad \underline{\text{or}} \qquad (1,5,5) \frac{2}{9} \times \frac{4}{9} \times \frac{4}{9} \times 3 = \frac{32}{243}$				M1
	$(1,2,5) \frac{2}{9} \times \frac{1}{3} \times \frac{4}{9} \times 6 = \frac{16}{81}$				M1
	$P(B=4) = \frac{16}{243} + \frac{32}{243} + \frac{16}{81} = \frac{32}{\underline{81}}$				A1
(ii)	$P(B=0) = \left(\left[\frac{2}{9}\right]^{3} + \left(\left[\frac{1}{3}\right]^{3}\right)^{3} + \left(\left[\frac{4}{9}\right]^{3}\right)^{3} + \left(\left[\frac{4}{9}\right]^{3}\right)^{3}$	$=\frac{11}{81}$			M1
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^2 + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^2 = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^2 + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^2 = \frac{28}{81}$			M1	
	$1 - \frac{11}{81} - \frac{10}{81} - \frac{32}{81} = \frac{28}{81} \qquad \underline{\text{or}} 1 - \frac{11}{81} - \frac{28}{81} - \frac{32}{81} = \frac{10}{81}$			M1	
	<i>b</i> 0	1	3	4	B1
	$P(B=b) \qquad \qquad \frac{11}{81}$	$\frac{10}{81}$	$\frac{28}{81}$	$\frac{32}{81}$	A1
					(10) Total 10
		Notes			10(4) 10
	B1: for writing or using the 3 corre	ct probabilities			
(i)	1 st M1: for identifying the 3 possibl	e samples			
	2nd M1: for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$				
	3rd M1: for $p \times q \times r \times 6$ where p, q and r are probabilities with $(p + q + r) = 1$				
	A1: for $\frac{32}{81}$ or awrt 0.395 [Calc: 0.3950617]				
(ii)	1st M1: for $p^3 + q^3 + r^3$ (for their <i>p</i> , <i>q</i> and <i>r</i>)				
	2nd M1: for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their p, q and r)				
	3rd M1: for use of all probabilities of $P(B = b)$ adding to 1 [Must have 3, 4 or 5 values for b]				
	B1: for ranges 0, 1, 3 and 4 with none omitted and no extras. Allow extras if assigned probability of 0				
SC 40 in (i)	A1: for a fully correct probability distribution. If A0 second in (i) and all other marks second in (ii) and served much's for 2 values of h , second A1 in (ii)				
эс аў іп (l)	II AU scored in (1) and all other mark	s scored in (11) <u>and</u> c	offect prob s for 2	values of v : award A	x1 m (n)

S2 2021 06 MS

Question Number	Scheme	Marks	
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	B1cso	
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$		
	$1+25\beta=0 \therefore \beta=-\frac{1}{25} \qquad *$	B1cso	
(b)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	(2) M1	
	$\therefore [f(y) =] \begin{cases} \frac{2}{25}y & 0 \le y \le 5\\ 0 & \text{otherwise} \end{cases}$	A1	
(c)	$\left[P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \frac{8}{9} \text{oe}$	(2) B1	
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{ oe } \underline{\text{or}} \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{ oe}$	M1	
	$d = \frac{9}{7}$ oe	A1	
	<u>5</u>		
(d)	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936	(3) B1	
	[Let G = the number of spins with distance < 2.2 m] [P($G \ge 5$) =]		
	$\left(\left(\frac{1}{9}\right)^{3} \times \left(\left(\frac{1}{21}\right)^{3}\right)^{3} + 3 \times \left(\left(\frac{1}{9}\right)^{2} \times \left(\left(\frac{1}{8}\right)^{3}\right) \times \left(\left(\frac{1}{21}\right)^{3}\right)^{3} + 3 \times \left(\left(\frac{1}{9}\right)^{3} \times \left(\left(\frac{1}{21}\right)^{3}\right)^{2} \times \left(\left(\frac{1}{25}\right)^{3}\right)^{3}\right)$	M1, M1	
	= 0.000 373226 awrt <u>0.000 373</u>	A1	
		(4)	
	Notes	1 otal 11	
(a) (i)	B1: for stating or using the fact that when $y = 0$ then $\alpha + \beta y^2 = 1$		
(ii)	B1: for stating or using that when $y = 5$ then $\alpha + \beta y^2 = 0$ and setting up the equation leading to	$\beta = -\frac{1}{25}$	
(b)	M1: for differentiating. Implied by $\pm \frac{2}{"25"}y$ can ft their value of β		
	A1: for a fully correct $f(y)$ defined for the whole range.		
(c)	B1: for using $F(y)$ and $\frac{5}{3}$ to find $P(Y > \frac{5}{3})$. Allow $\frac{8}{9}$ or any exact equivalent.		
	M1: for LHS = p where 0		
	A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8		
7 15	D1. for $ 2 $ or event 0.104. This work is a 111 in $(1, 1)$		
(d)	B1: For $\frac{1}{625}$ or awrt 0.194 This mark could be implied by a correct answer.		
	1" IVII: for $p^2q^2 + np^2(1-p)q^2 + np^2q^2(1-q)$ where p and q are probabilities and n is an integer > 0 2nd M1: for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where p and q are probabilities		
	A1: for awrt 0.000 373		

Question Number	Scheme		
6. (i)	z = 1.25	B1	
	$\frac{187.5 - \mu}{\sigma} = 1.25$		
	$187.5 - \mu = 1.25\sigma$		
	$\mu = 225 p$		
	$\sigma = \sqrt{225p(1-p)}$ $(187.5 - 225p)^{2} = (1.25)^{2} \times 225p(1-p) \text{ or } (150 - 180p)^{2} = 225p(1-p) \text{ (o.e.)}$		
	e.g. $900(5-6p)^2 = 225(p-p^2) \implies 4(25-60p+36p^2) = p-p^2$	A 1 V	
	Leading to $145p^2 - 241p + 100 = 0*$	Al*	
(ii)	$[(29p-25)(5p-4)=0 \Rightarrow]$ $p=0.8$ or $p=\frac{25}{29}$ (accept: 0.862(0689))	M1	
	[p=] 0.8 because 0.862 gives a mean greater than 188 (oe)		
	Notes 10ta		
(i)	B1: for 1.25 or better (calculator gives: 1.25027)		
	1 st M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5		
	2nd M1: for standardising using μ and σ or np and $\sqrt{np(1-p)}$ (Condone letter <i>n</i> or any integer > 0)		
	1st A1: for a correct equation with compatible signs, allow 1.250 If using a value for <i>n</i> it must be 225 3rd M1: for $\mu = 225p$ seen at any stage in the working.		
	4th M1: for $\sigma = \sqrt{225p(1-p)}$ seen at any stage in the working. Must be for σ not $\sigma^2 = 225p(1-p)$		
(ii)	 5th M1: for squaring to get a quadratic equation in p 2nd A1*: dep on all previous Ms and use of 1.25 (with correct sign) for at least 1 correct intermediate step from a correct quadratic equation e.g one of those in scheme for 5th M1 		
(11)	A1: for 0.8 and a correct reason to eliminate 0.862		