S2_2021_01_MS

Number		Scheme						
1(a)	B(30, 0.05)							
(b)	The probability (oe) of an <u>oyster</u> surviving/not surviving is constant							
	The survival of each <u>oyster</u> is independent of the others							
(c)(i)	${}^{30}C_{24}(0.05)^6(0.95)^{24}$ oe							
	= 0.002708 awrt 0.0027							
(ii)	$P(Y \ge 3)$	$=1-P(Y \leq 2)$ from $Y \sim B(3)$	0, 0.05) or $P(X \le 27)$ from $X \sim B$	8(30, 0.95)	M1			
		= 1 - 0.8122						
		= 0.1878		awrt 0.188	A1			
						(4)		
(d)	$A \sim \text{Po}($				B1			
	$P(A \ge n)$,						
		$(a-1) < 0.2 \text{ or } P(A \le 6) = 0.130$	01awrt 0.13 or $P(A \ge 7) = 0.8699a$	wrt 0.87	M1			
	n = 7				A1cac			
(2)	Ц·n-		B1	(3)				
(e)	0 1	0.05, $H_1: p > 0.05$ $C \sim B(25, 0.05)$ and $P(C \ge 4)$						
		()		M1				
	$P(C \ge 4) = 0.0341 / CR C \ge 4$ $P(D \le 21) = 0.0341 / CR D \le 21$							
		ce to reject H ₀ , in the CR, sig			dM1			
		There is evidence that the proportion of oysters not surviving has increased (oe)/ Jim's belief is supported.						
						(5)		
			N. d		Tot			
(a)	R1	Must include B(inomial) $n =$	Notes 25 and $n = 0.05$. Do not allow $n = 0.95$ in	n part (a)	Tot			
(a) (b)	B1 B1		25 and $p = 0.05$. Do not allow $p = 0.95$ in					
(b)	B 1	For either correct assumption	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra-					
	B1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$	25 and $p = 0.05$. Do not allow $p = 0.95$ ir in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability					
(b) (c)(i)	B1 M1 A1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2)	dicting commen	ts.			
(b)	B1 M1 A1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) rith B(30, 0.05) or writing/using P($X \le 2$	dicting commen	ts.			
(b) (c)(i)	B1 M1 A1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) rith B(30, 0.05) or writing/using P($X \le 2$	dicting commen	ts.			
(b) (c)(i) (ii)	B1 M1 A1 M1 A1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig	25 and $p = 0.05$. Do not allow $p = 0.95$ ir in context. Ignore extraneous non-contract $P(X \le 5)$ with one correct probability scores 2 out of 2) rith B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2)	dicting commen 7) with B(30, 0 .rk)	ts.			
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 B1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P($A < n$) n = 7 which must come from	25 and $p = 0.05$. Do not allow $p = 0.95$ ir in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2) wh of 0.1301 or 0.8699 can imply this mate A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5)	dicting commen (7) with B(30, 0 (7) rk) 0.87	ts.			
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 M1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P($A < n$) n = 7 which must come from	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2) that of 0.1301 or 0.8699 can imply this man A < 7 = awrt 0.13 or P($A > 6$) = awrt	dicting commen (7) with B(30, 0 (7) rk) 0.87	ts.			
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 B1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P($A = 7$ which must come from Use of normal approx. with μ	25 and $p = 0.05$. Do not allow $p = 0.95$ ir in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2) wh of 0.1301 or 0.8699 can imply this mate A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5)	dicting commen (7) with B(30, 0 (7) with B(30, 0) (7) wit	ts.			
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 B1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P(A n = 7 which must come from Use of normal approx. with μ Exact binomial gives P($A \le 6$)	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ ores 2 out of 2) that of 0.1301 or 0.8699 can imply this man A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $u = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$.	dicting commen (7) with B(30, 0 (7) with B(30, 0) (7) with B	ts.			
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 M1 A1 B1 M1 A2 Note:	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P(A n = 7 which must come from Use of normal approx. with μ Exact binomial gives P($A \le 6$) Both hypotheses correct (allow	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2) wht of 0.1301 or 0.8699 can imply this match A < 7) = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $u = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ $p = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A	dicting commen (7) with B(30, 0 (7) with B(30	.95)	al 14		
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P(A n = 7 which must come from Use of normal approx. with μ Exact binomial gives P($A \le 6$) Both hypotheses correct (allow	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ pres 2 out of 2) wht of 0.1301 or 0.8699 can imply this mate A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $t = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ $p = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A w use of p or π). Allow H ₀ : $p = 0.95$, H g/using P($C \ge 4$) or if CR given P($C \ge 4$)	dicting commen (7) with B(30, 0 (7) with B(30	.95)	al 14		
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1 A1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow $P(A < n) < 0.2$ or $P(A = 1) < 0.2$ or $P(A = 1$	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ ores 2 out of 2) what of 0.1301 or 0.8699 can imply this man A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $u = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ $D = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A w use of p or π). Allow H ₀ : $p = 0.95$, H z /using P($C \ge 4$) or if CR given P($C \ge$ CR given P($D \le 20$) st not go on and give incorrect CR) or co	dicting commen (7) with B(30, 0 (7) with B(30	tts. 0.95) 0.95) an e upper	al 14		
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P($A = 7$ which must come from Use of normal approx. with μ Exact binomial gives P($A \le 6$) Both hypotheses correct (allow Using B(25, 0.05) and writing writing/using P($D \le 21$) or if of Correct probability to 3sf (mu (dep on 1 st M1) A correct non-	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ ores 2 out of 2) with of 0.1301 or 0.8699 can imply this material A < 7) = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $t = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ $P = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A w use of p or π). Allow H ₀ : $p = 0.95$, H $z/using P(C \ge 4)$ or if CR given P($C \ge$ CR given P($D \le 20$) st not go on and give incorrect CR) or co- contextual statement (do not allow contra-	dicting commen (7) with B(30, 0 (7) with B(30	tts. 0.95) 0.95) an e upper ntextua	al 14		
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1 A1	For either correct assumption allow ${}^{30}C_6$ oe or $P(X \le 6) - F$ awrt 0.0027 (correct answer s Writing/using $1 - P(Y \le 2)$ w awrt 0.188 (correct answer sco Writing or using Po(10) (sig Allow P($A < n$) < 0.2 or P(A n = 7 which must come from Use of normal approx. with μ Exact binomial gives P($A \le 6$) Both hypotheses correct (allow Using B(25, 0.05) and writing writing/using P($D \le 21$) or if (Correct probability to 3sf (mu (dep on 1 st M1) A correct non- comments) which is consisten	25 and $p = 0.05$. Do not allow $p = 0.95$ in in context. Ignore extraneous non-contra- $P(X \le 5)$ with one correct probability scores 2 out of 2) with B(30, 0.05) or writing/using P($X \le 2$ ores 2 out of 2) what of 0.1301 or 0.8699 can imply this man A < 7 = awrt 0.13 or P($A > 6$) = awrt use of Po(10) or N(10, 9.5) $u = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ $D = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A w use of p or π). Allow H ₀ : $p = 0.95$, H z /using P($C \ge 4$) or if CR given P($C \ge$ CR given P($D \le 20$) st not go on and give incorrect CR) or co	dicting commen (7) with B(30, 0 (7) with B(30	uts. 0.95) 0.95) an e upper ntextua by A1)	al 14		

S2_2021_01_MS

Question Number		Scheme		Marks			
2(a)	1 - F(3.5)) = 1 - 0.97127		M1			
		= 0.028727	awrt 0.0287	A1			
				(2)			
(b)	$W \sim B(3)$	30,"0.0287")		M1			
	$1 - P(W \le 1) = 1 - \left(\left(1 - "0.0287" \right)^{30} + {}^{30}C_1 \left("0.0287" \right)^1 \left(1 - "0.0287" \right)^{29} \right) \text{oe}$						
		$= 1 - 0.78748 \dots = 0.2125\dots$ awrt 0.213 to	o awrt 0.216	A1			
				(3)			
(c)	$\frac{\mathrm{dF}(w)}{\mathrm{d}w} =$	$=\frac{1}{3}\left(1-\frac{w^3}{64}\right)$		M1			
	$E(W^2) =$	$= \int_{0}^{4} \frac{1}{3} \left(w^{2} - \frac{w^{5}}{64} \right) dw = \frac{1}{3} \left[\frac{w^{3}}{3} - \frac{w^{6}}{384} \right]_{0}^{4}$		dM1			
		$=\frac{32}{9}$		A1			
	$Var(W) = \frac{32}{9} - 1.6^{2}$ $= \frac{224}{225}$						
	:		A1				
				Total 10			
()	3.64	Notes					
(a)	M1	For writing or using $1 - F(3.5)$ Implied by correct answer					
	A1	awrt 0.0287					
(b)	M1 For writing or using B(30,"0.0287") allow n ("their 0.0287") ¹ (1		1 - "their 0.028	87")-			
	ignore any number for n (allow their p to 2sf)						
	M1	For $1 - ((1 - "0.0287")^{30} + {}^{30}C_1 ("0.0287")^1 (1 - "0.0287")^{29})$ Allow ${}^{30}C_{29}$ in any form					
	A1	A1 allow answer in the range awrt 0.213 to awrt 0.216					
(c)	M1						
	dM1 (Dep on previous M1). Attempting to integrate expanded $w^2 f(w)$. At least one $w^n \to w^{n+1}$ Ignore limits for this M mark.						
	A1	awrt 3.56 must come from correct algebraic integration (may be embedded)					
	M1	Use of correct formula with values substituted. Must see the sub	otraction of 1.6	2			
	A1	Dependent upon 2 nd M1 awrt 0.996 (A correct answer with no algebraic integration seen may score	M1M0A0M1/	40)			

S2 2021 01 MS

Question Number	Scheme						
3(a)	$P(X \neq 4)$	4) = 1 - P(X = 4) oe $\left(=1-\frac{e^{-7}7^4}{4!}$ or $1-(0.1730-0.0818)\right)$		M1			
		= 0.90877	awrt 0.909	A1			
				(2)			
(b)	P(Y=1)	$=(1-"0.90877")("0.90877")^4 \times {}^5C_1$		M1M1			
	= 0.311						
				(3)			
(c)(i)	$\lambda = 0.0$			B1			
	· · · · · · · · · · · · · · · · · · ·	07 <i>n</i> , 0.07 <i>n</i>)		M1			
	$\frac{3.5 - "0.07}{\sqrt{"0.07n}}$			M1			
	$\frac{3.3-0.0}{\sqrt{0.07n}}$	$\frac{7n}{n} = -1.55$ or "0.07 <i>n</i> " - $(1.55\sqrt{0.07})\sqrt{n} - 3.5 = 0$		B1			
	$n - \left(\frac{1.5}{0.0}\right)$	$\frac{5}{7}\sqrt{0.07}\left(\sqrt{n} - \frac{3.5}{0.07}\right) = 0 \Longrightarrow n - 1.55\sqrt{\frac{n}{0.07}} - 50 = 0$		Alcso			
				(5)			
(ii)	$\sqrt{n} = \frac{\frac{1.5}{\sqrt{0}}}{\frac{1}{\sqrt{0}}}$	$\frac{55}{.07} \pm \sqrt{\left(\frac{1.55}{\sqrt{0.07}}\right)^2 + 4 \times 50} = \text{awrt} - 4.72 \text{ or awrt } 10.6 (4\sqrt{7})$		M1			
	<i>n</i> = 112	2		Alcao			
				(2)			
(d)	$H_0: \lambda =$	$= 7 H_1: \lambda > 7$		B1			
	$P(X \ge 1)$	$P(X \ge 14) = 0.0128$		M1			
		$= 1 - 0.9943$ $P(X \ge 15) = 0.0057$					
		$= 0.0057$ CR X ≥ 15		A1			
	Reject F	H ₀ , in the CR, Significant		dM1			
	There is evidence that the number of water fleas per 100 ml of the pond water has increased						
				(5)			
				Total 17			
		Notes		Total 17			
(a)	M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe		Total 17			
(a) (b)	M1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4 (" their 0.909") \text{ or } (1 - " their 0.909")(" their 0.909")^4 allow their values of the equation of the equation$	lues to 2s.f.	Total 17			
		For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe	lues to 2s.f.	Total 17			
(b)	M1 M1 A1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4 (" their 0.909") \text{ or } (1 - " their 0.909")(" their 0.909")^4 allow their values P(Y = 1) = (1 - " their 0.909")(" their 0.909")^4 \times {}^{5}C_1 allow their values to 2s.f.awrt 0.312 or awrt 0.311$	lues to 2s.f.	Total 17			
	M1 M1 A1 B1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4 (" their 0.909") \text{ or } (1 - " their 0.909")(" their 0.909")^4 allow their values P(Y = 1) = (1 - " their 0.909")(" their 0.909")^4 \times {}^5C_1 allow their values to 2s.f.awrt 0.312 or awrt 0.311Writing or using mean as 0.07n$					
(b)	M1 M1 A1 B1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4 (" their 0.909")$ or $(1 - " their 0.909")(" their 0.909")^4$ allow their values $P(Y = 1) = (1 - " their 0.909")(" their 0.909")^4 \times {}^{5}C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of n (may be implied by	correct stand	ardisation).			
(b)	M1 M1 A1 B1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A	correct stand	ardisation).			
(b)	M1 M1 A1 B1 M1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4$ ("their 0.909") or $(1 - " their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - " their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1)	correct stand	ardisation).			
(b)	M1 M1 A1 B1 M1 M1 B1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55	correct stand llow 2.5, 3, 3	ardisation). .5,4, 4.5 (A			
(b)	M1 M1 A1 B1 M1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4$ ("their 0.909") or $(1 - " their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - " their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1)	correct stand llow 2.5, 3, 3	ardisation). .5,4, 4.5 (A			
(b)	M1 M1 A1 B1 M1 M1 B1 A1cso M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - " their 0.909")^4$ ("their 0.909") or $(1 - " their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - " their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6	correct stand llow 2.5, 3, 3	ardisation). .5,4, 4.5 (A			
(b) (c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1)	correct stand llow 2.5, 3, 3	ardisation). .5,4, 4.5 (A			
(b) (c)(i)	M1 M1 A1 B1 M1 M1 B1 A1cso M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × ${}^{s}C_{1}$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0]	correct stand llow 2.5, 3, 3 en standardisa	ardisation). .5,4, 4.5 (A			
(b) (c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.000$	correct stand llow 2.5, 3, 3 en standardisa	ardisation). .5,4, 4.5 (A			
(b) (c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso B1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their value $P(Y=1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as 0.07 <i>n</i> Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.000$ awrt 0.0057 or correct CR allow $X > 14$	correct stand llow 2.5, 3, 3 en standardisa	ardisation). .5,4, 4.5 (A ation			
(b) (c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao B1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") ⁴ allow their values $P(Y = 1) = (1 - "their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by Standardising with their mean and their \sqrt{var} . If not stated they must be correct. A correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.000$	correct stand llow 2.5, 3, 3 en standardisa 057 n-contextual o	ardisation). .5,4, 4.5 (A ation			

S2 2021 01 MS

Question Number	Scheme							
4(a)	$\int_{0}^{a} k(a-x)^{2} dx = \left[k \left(a^{2}x - ax^{2} + \frac{x^{3}}{3} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k(a-x)^{3}}{3} \right]_{0}^{a}$							
	$k\left(a^{3}-a^{3}+\frac{a^{3}}{3}\right) = 1$ or $\frac{ka^{3}}{3} = 1$ \Rightarrow $ka^{3} = 3$							
(b)	$\int_0^a kx (a \cdot$	$(-x)^{2} dx = \left[k \left(\frac{a^{2}x^{2}}{2} - \frac{2ax^{3}}{3} + \frac{x^{4}}{4} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k}{2} \right]_{0}^{a}$	$\frac{x(a-x)^{3}}{3} + \frac{k(a-x)^{4}}{12} \bigg]_{0}^{a}$	M1A1				
	$k\left(\frac{a^2a^2}{2}\right)$	$-\frac{2aa^3}{3} + \frac{a^4}{4} = 1.5$ or $\left[\frac{ka(a)^3}{3} - \frac{k(a)^4}{12}\right]_0^a = 1$.5 or $ka^4 = 18$ oe	dM1				
	$\frac{ka^4}{ka^3} = 6$	or $\frac{18}{3} = 6$ [: $a = 6$]		Alcso				
			1	(4)				
(c)	F(x) =	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right)$	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right) = 0.5 \text{ oe}$	M1				
	F(1.15)(= 0.47) and $F(1.25) (= 0.5038)$	1.2377	M1				
	$F(1.15) = awrt \ 0.47, F(1.25) = awrt \ 0.504$ (0.47(18) < 0.5 < 0.503(8)) therefore the median is 1.2 to 1 decimal place. therefore the median is 1.2 to 1							
	Notes							
(a)	M1	Integrating $f(x)$ at least 1 term correct. For M	1 allow $\frac{\pm k(a-x)^3}{3}$					
	A1	Correct integration (ignore limits)						
	A1cso	cso Substitute limits and equating to 1 to form one expression in terms of k and a leading						
(b)	M1	Indicating that they are integrating $xf(x)$ with a	an attempt at integrating $x^n \rightarrow x^{n+1}$					
	A1	Correct integration (dom on provide M1) Substitute limits and equating to 1.5 to form a 2 nd expression						
	dM1	(dep on previous M1). Substitute limits and equating to 1.5 to form a 2^{nd} expression k and a						
	A1cso Correct method shown to solve their 2 equations to eliminate k and show $a=6$							
(c)	M1 Finding correct F(x). Allow F(x) = $1 - \frac{(6-x)^3}{216}$ but F(x) = $\frac{(6-x)^3}{216}$ is M0							
	Allow in terms of k for this markM1For attempting their F(1.15) and their F(1.25) or a suitable tighter interval or for 'solleading to a value awrt 1.24							
	A1Both correct values and correct conclusion (allow $x = 1.2$) or awrt 1.24 and correct cond (allow $x = 1.2$). Allow change of sign argument if they have subtracted 0.5 (i.e. $-0.028 < 0 < 0.0038$)							

Question Number		Scheme					
5(a)	U[0, 3]			M1			
	$\frac{3-1.8}{3}$	= 0.4		A1			
	3			(2)			
(b)	$X^2 = W^2$	$(2^{2} + (3 - W)^{2})^{2}$		M1			
		$x^2 + 9 + W^2 - 6W \implies X^2 = 2W^2 - 6W$	5W + 9	Al			
				(2)			
(c)	$\mathrm{E}(W)=1$.5		B1			
	Var(W) =	$=\frac{9}{12}=\frac{3}{4}$		B1			
	$E(W^2) =$	$= \frac{9}{12} = \frac{3}{4}$ $= \frac{3}{4} + 1.5^{2}$ = 3		M1			
	$E(W^2) =$	3		A1			
	So E(X	$(2) = 2 \times "3" - 6 \times "1.5" + 9 = 6$		M1A1			
				(6)			
(d)	$P(X^2 >$	$5) = P(2W^2 - 6W + 4 > 0)$		M1			
		= P((2W-2)(W-2) > 0)		M1			
	= P(W > 2) + P(W < 1)						
	$=\frac{2}{3}$ oe						
				(4)			
				Total 14			
			le				
(a)	M1	Writing or using the correct distrib	ution Allow: $\frac{1.8}{3}$ for M1A0				
	A1	0.4 oe					
(b)	M1	Using Pythagoras to find the length	× ,				
	A1		$X^2 = 2W^2 - 6W + 9$ with no incorrect working				
(c)	B1	1.5	3 .				
	B1	Var(W) = 0.75	Using integration: $E(W^2) = \int_0^3 \frac{1}{3} w^2 dw$ (ig	nore limits)			
	M1	Writing or using $E(W^2) = Var(W) + [E(W)]^2$ $\left[\frac{1}{9}w^3\right]_0^3$ (correct integration with correct limit					
	A1						
	M1	+9 with their values.					
	A1						
(d)	M1		probability of $2W^2 - 6W + 4 > 0$ (condone =)				
	M1		= 1 and $W = 2$ implies 1^{st} two M marks)				
	dM1 (dep on 2 nd M1) Realising they need to add the 2 outer areas						
	A1	awrt 0.667					

S2_2021_01_MS

Question Number	Scheme							Marks		
6(a)	Taking a random sample is quicker/cheaper/easier (compared to asking all of the youth club members).							B1 (1)		
(b)	A <u>list/reg</u>	A <u>list/register/database</u> of <u>all</u> the youth club <u>members</u>							(1) B1 (1)	
(c)	The mem	The members							B1 (1)	
(d)	$p^2 = \frac{25}{64}$									M1
	$p^2 = \frac{25}{64}$ $p = \frac{5}{8}$									A1
		r = 1			or	$\frac{25}{64} + 2"\frac{5}{8}$	$["q+2"]{\frac{5}{8}}$	$"r + q^2 + \frac{1}{2}$	$\frac{1}{16} + r^2 = 1$	B1
		equations fro	om above	2						B1
	$\frac{3}{8}q - q^2 =$	$=\frac{1}{32}$								dM1
	$q = \frac{1}{4}$									A1
	P(M = 50)	$)) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$	_ *							Alcso*
										(7) Total 10
	Notes									
(a)	B1	Any one of t	<u> </u>		<u> </u>				sons.	
(b)	B1	Idea of list(c			g complet	e list) and	members	5.		
(c)	B1	The member			1					
(d)	M1	Correct meth		_ ^	d					
	A1	$p = \frac{5}{8}$ or $P(X=20) = \frac{5}{8}$								
	B1	One equation in q and r from use of $p + q + r = 1$, $P(M = 60)$ or $\sum P(M=m) = 1$ see (allow ft on their value of p)								
	B 1	Two correct equations in q and r Some will substitute directly into the third equation s see: $\frac{25}{64} + \frac{5}{4}q + \frac{5}{128q} + q^2 + \frac{1}{16} + \frac{1}{1024q^2} = 1$ which is correct and scores B1B1						n so may		
	dM1	(dep on 1 st B1) Correct method to solve simultaneous equation leading to a probabilit (may be implied by $q = \frac{1}{4}$ or $r = \frac{1}{8}$ provided B1B1 scored)						y for <i>q</i> or <i>r</i>		
	A1	Correct probability for q (dependent on all previous marks in part (d))								
	A1cso*	Correct solu	tion with	use of P(<i>l</i>	M = 50) =	q^2 and a	ll previou	s marks a	warded.	
	Note:	т	20	35	45	50	60	70		
		P(<i>M</i> = <i>m</i>)	$\frac{25}{64}$	2pq	2pr	q^2	$\frac{1}{16}$	r^2		
		$\frac{25}{64} + 2pq + 2$	$2pr+q^2$	$+\frac{1}{16}+r^2=$	=1					