Question Number	Scheme			
1 (a)	$P(H=6) = \frac{e^{-4}4^6}{6!}$ or $P(H \le 6) - P(H \le 5) = 0.8893 - 0.7851$			
		= 0.10419 = 0.1042 awrt <u>0.104</u>	A1	
(b)	$J \sim Po($	8)	B1	(2)
(b)	$P(J \le 7) - P(J \le 2) = 0.4530 - 0.0138$			
		= 0.4392 awrt 0.439	M1 A1	
				(3)
(c)	$K \sim N($	28,28)	M1	
	P(K > 1)	$30) \approx P\left(Z > \frac{30.5 - 28}{\sqrt{28}}\right)$	M1N	(1A1
		= P(Z > 0.4724)		
		= 1 - 0.6808		
		= 0.3192 (calc 0.3183) awrt 0.319/0.318	A1	()
(d)(i)	The n(r	bability)/0.97 is not small oe	B1	(5)
(u)(l)				(1
(ii)	$L \sim Po($	3)	B1	
	$P(L \le 4) = 0.8153$ awrt <u>0.815</u>			.1
				(3
		Notes	Tota	al 14
		COFFECT AUSWERS HUDLY AT THAFKS TH EACH DAFT OF THIS CHESHOT.		
1(a)	M1	Correct answers imply all marks in each part of this question. Allow any value for lambda $e^{-\lambda}\lambda^6$ or $P(H \le 6)$ $P(H \le 5)$		
1(a)	M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$		
1(a)	M1 A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104		
1(a) (b)		Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45	3 or aw	vrt
	A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104	3 or aw	vrt
	A1 B1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439		
	A1 B1 M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28)		
(b)	A1 B1 M1 A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{their sd}}\right)$		
(b)	A1 B1 M1 A1 M1 M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{their sd}}\right)$ If they have not given a mean and a variance, they must be correct here.		
(b)	A1 B1 M1 A1 M1 M1 M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 - awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{ their sd}}\right)$ If they have not given a mean and a variance, they must be correct here. Writing or using a continuity correction 30 ± 0.5		
(b)	A1 B1 M1 A1 M1 M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{their sd}}\right)$ If they have not given a mean and a variance, they must be correct here.		
(b) (c)	A1 B1 M1 A1 M1 M1 M1 A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{ their sd}}\right)$ If they have not given a mean and a variance, they must be correct here. Writing or using a continuity correction 30 ± 0.5 Correct standardisation with 30.5 or awrt 0.47 awrt 0.319/0.318 Probability is not small (too large). Allow mean \neq variance.		
(b)	A1 B1 M1 A1 M1 M1 M1 A1 A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 - awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{ their sd}}\right)$ If they have not given a mean and a variance, they must be correct here. Writing or using a continuity correction 30 ± 0.5 Correct standardisation with 30.5 or awrt 0.47 awrt 0.319/0.318 Probability is not small (too large). Allow mean \neq variance. Do not allow e.g. ' <i>np</i> too large/ <i>np</i> > 10' on its own.		
(b) (c) (d)(i)	A1 B1 M1 A1 M1 M1 M1 A1 A1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{ their sd}}\right)$ If they have not given a mean and a variance, they must be correct here. Writing or using a continuity correction 30 ± 0.5 Correct standardisation with 30.5 or awrt 0.47 awrt 0.319/0.318 Probability is not small (too large). Allow mean \neq variance.		
(b) (c)	A1 B1 M1 A1 M1 M1 A1 A1 B1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$ awrt 0.104 Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45 0.0138 or awrt 0.0424 or awrt 0.313 $P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138) awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in star which takes priority) or writing N(28,28) $\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{ their sd}}\right)$ If they have not given a mean and a variance, they must be correct here. Writing or using a continuity correction 30 ± 0.5 Correct standardisation with 30.5 or awrt 0.47 awrt 0.319/0.318 Probability is not small (too large). Allow mean \neq variance. Do not allow e.g. ' <i>np</i> too large/ <i>np</i> > 10' on its own. Ignore extraneous non-contradictory comments.		

	1		S2_2020_	_01_MS Marks		
Question	Scheme $E \sim B(6, 0.35)$					
2(a)	$E \sim B(6, 0.35)$ (6.7) $E \sim B(6, 0.35)$					
(i)	P(E=2)	$P = P(E \le 2) - P(E \le 1)$ or $\binom{6}{2} 0.35^2 (1 - 0.35)^4$		M1		
	= 0.	6471-0.3191				
	= 0.3		awrt <u>0.328</u>	A1		
(ii)	$P(E \ge 4)$	$=1-P(E \le 3) \text{ or } 1-0.8826$		M1		
		= 0.1174	awrt <u>0.117</u>	A1 (5)		
(b)		$\begin{array}{ccc} 0.35 & H_1: p > 0.35 \\ 0.252 & H_2: p > 0.35 \end{array}$		B1		
	$L \sim B(5)$		$(L \ge 24) = 0.0396$	M1		
			$L \ge 23) = 0.071$			
		= 0.0207	$CR L \ge 24$	A1		
		o or Significant or 25 does lie in the critical region		dM1		
		evidence to support Kiyoshi's belief oe <u>or</u> that t	he proportion/number oe of	Alcso		
	large eg	gs has increased after adding the supplement		(5)		
(c)	Expected	d profit before supplement = $"0.1174"\times 1.$	20+(1-"0.1174")×0.60	M1		
	T	$= (\pounds)0.67044$				
	$P(X \ge 4)$)=0.2553	awrt 0.255	B1		
	· · · ·	l profit per box after supplement = " 0.2553 "×1.20		M1		
		$=(\pounds)0.08274$		Al		
	OR Expe	OR Expected profit per box after supplement = $"0.2553"\times1.20+(1-"0.2553")\times0.60-0.10$				
		$=(\pounds)0.65318$		(M1) (A1)		
	Kiyoshi s	hould not continue to add the supplement (as 0.0827	V < 0.10 or 0.653 < 0.67[0])	Alcso		
				(5)		
				Total 15		
2(a)	B1	Notes Using or writing B(6,0.35) in either part				
		Using or writing $P(E \le 2) - P(E \le 1)$ oe or writin	$\binom{6}{10}$ 0 25 ² (1 0 25) ⁴			
(i)	M1		$\log (C_2) 0.33 (1-0.33)$ oe			
(ii)	A1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$	P(E = A) + P(E = 5) + P(E = 6)			
(11)	M1 A1	awrt 0.117 (Correct answers imply all pre		be		
(b)	B1	Both hypotheses correct with p or π	vious marks in part (a))			
	M1 Writing or using $L \sim B(50, 0.35)$ and $1 - P(L \le 24)$					
	or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ leading to a CR. Condone use of normal approx $M \sim N(17.5, awrt 11.4)$ and $1 - P(M < 24.5)$ for the M1					
	A1	awrt 0.0207 or $L \ge 24$ allow any letter				
	dM1	dep on previous M being awarded for a correct sta ft their probability or CB Do not allow contradi				
	Alcso ft their probability or CR Do not allow contradicting non-contextual comments. Alcso All previous marks must be awarded. A correct statement in context. Nacd hold words NB award M141 for a correct statement in context.					
(c)	Need bold words. NB award M1A1 for a correct contextual statement on its own.Note: Some candidates may multiply by <i>n</i> or an integer so allow these multiples throughout.					
	M1 "their (ii) $\times 1.20 + (1 - "their(ii)") \times 0.60$					
Allow £	B1 awrt 0.255					
		or pence in part $p"\times 1.20 + (1 - p") \times 0.60 - "$ their 0.67044" or " $p"\times 1.20 + (1 - p") \times 0.60 - "$ their 0.67044" or " $p"\times 1.20 + (1 - p") \times 0.60 - "$				
or pence		$p"\times 1.20 + (1 - p") \times 0.60 - "$ their 0.67044" o	r " p "×1.20+(1-" p ")×0.60-0	.10 oe		
or pence in part	M1	" p "×1.20+(1-" p ")×0.60-"their 0.67044" o where $p > 0.1174$ (do not allow $p = 0.45$ for this m		.10 oe		
or pence			nark)	.10 oe		

Question Number		Scheme	Marks		
3(a)	$\frac{3}{4}$		B1		
			(1)		
(b)	$E(T) = \frac{2}{2}$	$\frac{50+2k}{2}[=25+k]$	B1		
		$=\frac{(4k)^2}{12}\left[=\frac{4k^2}{3}\right]$	B1		
	$E(T^2) =$	$\frac{4k^2}{3} + (25+k)^2$	M1		
	$\frac{7k^2}{3} + 6$	25 + 50k = 918.76			
	$7k^2 + 15$	0k - 881.28 = 0	dM1		
	$k = \frac{-150\pm 2}{2}$	$\sqrt{150^2 + 4 \times 7 \times 881.28}$	dM1		
	k = 4.8 o	14	A1		
			(6)		
(c)	P(T < 25)	· •	B1		
	B(50, 0.2				
	$P(X \ge 2$	$20) = 1 - P\left(X \le 19\right)$	M1		
		= 1 - 0.9861 = 0.0139 awrt 0.0139	A1		
		- 0.0159 awit 0.0159	(3)		
			Total 10		
		Notes			
(a) (b)	B1 B1	0.75 oe			
	DI	$E(T) = \frac{50 + 2k}{2} [= 25 + k]$ allow equivalent unsimplified expressions			
	B1	$Var(T) = \frac{(4k)^2}{12} \left[= \frac{4k^2}{3} \right]$ allow equivalent unsimplified expressions			
	M1	Using Var(T) + [E(T)] ² oe e.g. $\frac{4k^2}{3}$ = E(T ²) - $\frac{(25+k)^2}{2}$			
	dM1	Dependent on previous M being awarded. Substituting $E(T^2) = 918.76$, multip	lying out		
	and combining like terms leading to a 3TQ = 0dM1 Dependent on previous M being awarded. A correct method for solving their quadratic				
		– use of formula (allow one slip), completing the square, factorising.	luauratic		
	A1	Must have 4.8 oe on its own as answer (must reject $k = -26.2$ if seen)			
	ALT	4.8 on its own scores 6 out of 6. For first 4 marks in (b)			
	ALI	$\int_{25-k}^{25+3k} t^2(\frac{1}{4k}) dt = \left[\frac{t^3}{12k}\right]_{25-k}^{25+3k} \rightarrow \frac{(25+3k)^3}{12k} - \frac{(25-k)^3}{12k} = 918.76$			
		B2 for correct integral (ignore limits), M1 for attempt at integration $t^2 \rightarrow t^3$, dM1 for limits and = 918.76, then follow main scheme	r use of		
(c)	B1 M1	0.25			
		Writing or using $1 - P(X \le 19)$			
	A1	awrt 0.0139			

S2_2020_01_MS

Question Number	Scheme	Marks
4(a)	$\int_{1}^{2} \frac{1}{3} dt + \int_{2}^{4} k(4t^{2} - t^{3}) dt = 1$	M1
	$\left[\frac{1}{3}t\right]_{1}^{2} + \left[k\left(\frac{4t^{3}}{3} - \frac{t^{4}}{4}\right)\right]_{2}^{4} = 1$	A1
	$\frac{1}{3} + k \left(\frac{64}{3} - \frac{20}{3}\right) = 1$ or $\frac{44}{3}k = \frac{2}{3}$ leading to $k = \frac{1}{22}$	Alcso
		(3)
(b)	$\begin{bmatrix} \mathbf{f}(t) \end{bmatrix}$	B1(shape) dB1
		(labels)
	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & 1 & 2 & 4 \\ \hline & & & & [t] \end{array}$	
		(2)
(c)	$\frac{\mathrm{df}(t)}{\mathrm{d}t} = k\left(8t - 3t^2\right)$	B1
	$8t - 3t^2 = 0$	M1
	$8t - 3t^{2} = 0$ $t = \frac{8}{3} \text{ only}$ awrt 2.67	A1
		(3)
(d)	$\int_{1}^{t} \frac{1}{3} dx = \left[\frac{x}{3}\right]_{1}^{t}$	M1
	$F(2) + \int_{2}^{t} \frac{1}{22} \left(4x^{2} - x^{3} \right) dt = \frac{1}{3} + \left[\frac{4x^{3}}{66} - \frac{x^{4}}{88} \right]_{2}^{t}$	M1
	Or $\int \frac{1}{22} (4t^2 - t^3) dt = \frac{2t^3}{33} - \frac{t^4}{88} + C$ and F(4) =1	
	(0 <i>t</i> <1	
	$\begin{bmatrix} F(t) - \end{bmatrix} = \begin{bmatrix} -\frac{3}{3}t - \frac{3}{3} \end{bmatrix} \qquad 1 \le t < 2$	Al
	$F(t) = \begin{cases} \frac{1}{3}t - \frac{1}{3} & 1 \le t < 2\\ \frac{2t^3}{33} - \frac{t^4}{88} + \frac{1}{33} & 2 \le t \le 4 \end{cases}$	A1 A1
	1 otherwise	
(e)	P(T > 3) = 1 - F(3)	(5)
	$= 1 - \left[\frac{4 \times 3^3}{66} - \frac{3^4}{88} + \frac{1}{33}\right]$	M1
	$= \frac{67}{264} \text{ or } 0.2537 \text{ awrt } 0.254$	A1
		(2)
		Total 15

		Notes					
4(a)	M1Adding the two integrals together with correct limits and setting = 1 (may be do stages) Allow $\frac{1}{3}$ instead of first integralA1Correct integration (again allow $\frac{1}{3}$ instead of first integration)						
	Alcso						
(b)	 B1 Correct shape with correct curvature Horizontal line, then quadratic (increasing then decreasing as <i>t</i> increases) starti horizontal line and finishing on horizontal axis. The sketch is not continuous. T 						
	dB1 should be no solid vertical lines.dB1 Fully correct with 1, 2 and 4 each labelled at appropriate place on horizonta vertical labelling).						
		e.g. (b) f(t)					
(c)	B1	For $k(8t-3t^2)$					
	M1 A1	Putting their differential = 0 ignore missing k Allow awrt 2.67 only					
(d)	M1	For $\int_{1}^{t} \frac{1}{3} dx$ with attempt to integrate. Must have correct limits. Or for integration with +C and use of F(1) = 0					
	M1	For F(2) + $\int_{2}^{t} \frac{1}{22} (4x^2 - x^3) dx$ and attempt to integrate or					
		$\int \frac{1}{22} (4t^2 - t^3) dt = \frac{4t^3}{66} - \frac{t^4}{88} + C \text{ and using } F(4) = 1 \text{ or } F(2) = \frac{1}{3} - \text{must attempt to}$					
	A1	integrate, have $+ C$ For 2^{nd} line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any					
		letter to be used for this A1 mark) For 3rd line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any					
	A1	letter to be used for this A1 mark)					
	A1	All correct and in terms of <i>t</i> including $F(t)$. Allow the otherwise to be for any of the parts but there must be only one. (allow < instead of \leq and vice versa ditto > and \geq)					
(e)	M1	Attempting to find 1 – F(3) with attempt to use 3 rd line of their F(t) or $\int_{3}^{4} k(4t^2 - t^3) dt$					
	A1	$\frac{67}{264}$ oe or awrt 0.254					

Question Number		Scheme		Marks		
5(a)	<i>X</i> ~ Po(4)		M1		
	P(X = 0)	$P(X \ge 8) = 0.0511$				
		$P(X \ge 9) = 0.0214$				
	CR X =	0 oe $X \ge 9$ oe		A1A1		
				(3)		
(b)	3.97%			B1		
(2)	6 is not i	n the emitical region the data collected are consistent with Cha	ia'a alaim	(1) B1ft		
(c)		n the critical region – the data collected are consistent with Chr		(1)		
(d)	$\lambda = \frac{2n}{9}$			B1		
		= 0) > 0.9		M1		
	$1 - e^{-\frac{2n}{9}}$					
	2 <i>n</i>					
	$e^{-9} < 0.$	2				
	n = 10 and	nd $e^{\frac{2n}{9}} = 0.1083$ or $-\frac{2n}{9} < \ln 0.1$		dM1		
	n = 11	$e^{-\frac{2n}{9}} = 0.08677$				
	Therefore			A1 cao		
	II . 1	10 II - 1 - 10		(4)		
(e)		10 H ₁ : $\lambda < 10$ (10) P(W ≤ 5) =] 0.0671 or CR W ≤ 4		B1		
	-			B1		
	Do not reject H ₀ or insignificant or 5 does not lie in the critical region There is no significant evidence that the mean number/ rate of whales			M1		
	has decre	•		Alcso		
				(4)		
				Total 13		
(-)	M1	Notes				
(a)	M1 A1	Writing or using Po(4) (may be implied by one correct CR) Either tail $X = 0$ (allow $X \le 0$) or $[18 \ge] X \ge 9$ (allow $X > 8$)	Allow ony latters	$n n \log of V$		
	AI A1	Both tails $X = 0$ (and $X \le 0$) of $[18 \ge] X \ge 9$ (and $X > 8$) Both tails $X = 0$ oe, $[18 \ge] X \ge 9$ oe Allow any letters in place SC: $P(X = 0)$ and $P(X \ge 9)$ as final answer to score M1A1A0.				
(b)	B 1	awrt 3.97% or awrt 0.0397				
(c)	B1ft Supports this claim and correct reason. Allow a correct f.t. statement and reason based on their CR					
(d)	B1	writing or using $\frac{2n}{9}$				
	M1					
	dM1					
		Allow for a trial of any <i>n</i> value or $"-\frac{2n}{9}" < \ln 0.1$ (condone $\frac{2n}{9}$				
	A1	11 cao (Do not allow $n \ge 11$)		[)		
(e)	B1	Both hypotheses with λ or μ (Allow H ₀ : $\lambda = 2$ H ₁ : $\lambda <$	2)			
(-)	B1 B1	awrt 0.0671 or $W < 4$	-,			
	Correct statement ft their probability or CR. Do not allow contradicting non contextual					
	comments					
	A1cso	Fully correct solution with conclusion in context must have mean/r NB award M1A1 for a correct contextual statement on its own prov		1 1		

S2_2020_01_MS

Question Number	Scheme			Marks	
6(a)	$E(X^2) =$	$\int_{-1}^{1} \frac{1}{8} \left(x^4 + 2x^3 + x^2 \right) dx + \int_{1}^{\frac{11}{3}} \frac{1}{4} x^2 dx$			M1
	=	$= \left[\frac{1}{8}\left(\frac{x^5}{5} + \frac{2x^4}{4} + \frac{x^3}{3}\right)\right]_{-1}^{1} + \left[\frac{x^3}{12}\right]_{1}^{11}$			A1
		$=\frac{1684}{405}$			
	Var(X)	$= \frac{1684}{405} - \left(\frac{31}{18}\right)^2$			dM1
		$=\frac{1931}{1620}$ or 1.1919		awrt <u>1.19</u>	A1
(b)	$P\left(X < -\right)$	$\frac{1}{2} = \int_{-1}^{-0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ or 1- $\frac{1}{2} = \frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} (x^2 + 2x + 1) dx$ M2)	$\int_{-\infty}^{0.5} \frac{1}{2} (x^2 + 2x + 1) dx$ (gets		(4) M1
	$P\left(X > \frac{1}{2}\right)$	$\frac{1}{2} = \frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} (x^2 + 2x + 1) dx M2)$	J -0.5 X		M1
		$-\frac{1}{2} = \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8}\right]_{-1}^{-0.5} \text{ or } P\left(X > \frac{1}{2}\right)$			A1
	or $1 - \left\lfloor \frac{x}{2} \right\rfloor$	$\left[\frac{3}{4} + \frac{x^2}{8} + \frac{x}{8}\right]_{-0.5}^{0.5}$			
		$=\frac{83}{96}$ or 0.8645		awrt <u>0.865</u>	A1
					(4) Tatal 8
		Not	es		Total 8
		In parts (a) and (b) a correct ans	wer does NOT imply all mark	ks.	
(a)	M1	For attempt at $\int x^2 f(x) dx$ for both par	ts of $f(x)$ added and attempt to int	tegrate $x^n \to x^n$	x^{n+1}
	A1Correct algebraic integration (ignore limits). This mark cannot be implied.dM1dep on previous M1 for "an expression for their $E(X^2)$ " – $[E(X)]^2$ Values must be substituted here			ed.	
	A1	awrt 1.19			
(b)		Main scheme method	Alternative method using $F(x)$)	
	M1	$\int_{-1}^{-0.5} \frac{1}{8} \left(x^2 + 2x + 1 \right) dx \text{ oe}$	$\int_{-1}^{x} \frac{1}{8} \left(t^{2} + 2t + 1 \right) dt \text{or} \int \frac{1}{8} \left(x \right)^{2} dt$		with + C
	M1	$\frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} \left(x^2 + 2x + 1 \right) dx \text{ oe}$	Use of $F(-0.5) + (1 - F(0.5))$	oe	
	NB	$1 - \int_{-0.5}^{0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ gets M2	Note: $F(-0.5) = \frac{1}{192}$ and $F(0.5) = \frac{1}{192}$	$5) = \frac{9}{64}$	
	A1	One correct integration (may be implied by $\frac{1}{192}$, $\frac{9}{64}$ or $\frac{55}{64}$)	F(x) = $\frac{1}{8} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right)$ (fr	rom - 1 < x <	:1)
	A1	$\frac{83}{96}$ or awrt 0.865 must come from	correct working and dependen	t on all previ	ious marks.