Question	Scheme		
1 (a)	0.85	B1	
			(1)
(b)	$3X - 3 < X + 2 \rightarrow X < 2.5$	M1	
	[P(X < 2.5) =] 0.5	A1	
			(2)
(c)	$[E(X)=]1\times0.3+2\times0.2+3\times0.35+4\times0.15=$	M1	
	2.35	A1	
			(2)
(d)	$\left[E(X^{2}) = \right] 1^{2} \times 0.3 + 2^{2} \times 0.2 + 3^{2} \times 0.35 + 4^{2} \times 0.15 \left[= 6.65 \right]$	M1	
	$[Var(X) =] "6.65" - "2.35"^2$	M1	
	= 1.1275*	A1*	
			(3)
(e)	$\left[\operatorname{Var}(5-2X) = \right] 4.51$	B1	
			(1)
		Tota	
	Notes		
	Look out for answers given next to the questions		
(a)	B1 oe Must be identified as answer to part (a) (not just seen anywhere in the script). Ig label.	gnore thei	r
(b)	M1 for $X < 2.5$ (condone $X > 2.5$, $X = 2.5$) or $X \le 2$ or for identifying $X = 1$ and $X = 2$ (circled, ticked, or otherwise clearly identified as the only 2 x -values that satisfy the inequal or $0.3 + 0.2$	may be ality)	
	A1 oe Correct answer scores 2 out of 2.		
(c)	M1 for an attempt to find $E(X)$ with at least 3 correct products or terms with intention to add $0.3 + 0.4 + 1.05 + 0.6$ (may be seen in table at the start of the question) Division by 4 or any k ($k \ne 1$) is M0		
	A1 oe Correct answer scores 2 out of 2		
(d)	M1 for an attempt to find $E(X^2)$ with at least 3 correct products or terms with intention to add $0.3 + 0.8 + 3.15 + 2.4$ (may be seen in table at the start of the question or elsewhere) Division by 4 or any k ($k \ne 1$) is M0 6.65 on its own does not imply this mark		
	M1 for $6.65 - 2.35^2$ ft their E(X) and E(X ²).		
	A full calculation scores M1M1 e.g. $1^2 \times 0.3 + 2^2 \times 0.2 + 3^2 \times 0.35 + 4^2 \times 0.15 - 5.5225$		
	A1*cso dependent on both M marks for a fully correct expression for Var(X) leading to c answer 1.1275 with no incorrect working seen.	orrect giv	en
	$6.65 - 2.35^2 = 1.1275$ on its own scores M0M1A0		
(e)	B1 for 4.51 oe		

Question	Scheme			
2(a)	$\left[\sum x_B = \right] 54 \times 45 - 24 \times 47 \left[=1302\right]$ or $\frac{24 \times 47 + 30b}{54} = 45$	M1		
	$\left[\bar{x} = \right] \frac{54 \times 45 - 24 \times 47}{30} = 43.4 *$	A1*		
		(2)		
(b)	$\sqrt{\frac{66876 + 73826}{54} - 45^2} = \qquad \text{or} \qquad \sqrt{\frac{(66876 + 73826) - \frac{2430^2}{54}}{54}}$	M1		
	24.095 awrt 24.1	A1		
() (*)	NY CC	(2)		
(c)(i)	No effect as e.g. adding 2 to each does not change the variance	B1		
(ii) (iii)	Increase as e.g. the total mark will increase Decrease as e.g. the mean mark of class <i>B</i> is closer to the mean mark of class <i>A</i>	B1 B1		
(111)	Decrease as e.g. the mean mark of class B is closer to the mean mark of class A	(3)		
	Notes	Total 7		
()	M1 for a correct method to find the total marks for class B	10007		
(a)	or for a correct equation for $b = g \cdot 1128 + 30b = 2430$ but not $30b = 1302$ on its own			
	A1* a fully correct method shown leading to 43.4			
	For the equation in b there should be 1 line of intermediate working between the equation and the			
	given answer.			
SC:	Verification method e.g. $\frac{24 \times 47 + 30 \times 43.4}{54} = 45$ scores M1A0			
(b)	M1 for a correct method to find the standard deviation including root			
	A1 awrt 24.1 correct answer scores 2 out of 2 allow $s = \text{awrt } 24.3$			
(c)(i)	B1 for no effect and a correct reason: • Spread/variation/range or difference (in marks) remains the same o.e. • Addition has no effect/only multiplication/division affects the variance o.e. Variance not affected by coding on its own is B0			
(ii)	 B1 for increase and a correct reason: Total/mark/score/∑x increases o.e. Mean of class B increases (by 2 marks) o.e. Total/mark/score/∑x for class B increases (by 60 marks) o.e. Incorrect statements score B0 e.g. "The mean (of all 54 students) increases by 2" or e.g class B increases by 48 marks" Ignore calculation if seen, but do not allow increases by 1.11 on its own to score the results. 			
(iii)	 B1 for decrease and correct reason: Mean/marks of class B now closer to mean/marks of class A o.e. Values/marks/scores are closer together o.e. Less spread/variation between values/marks/scores (for class A and class B) o.e. 			

Question	Scheme			
3 (a)	eg They represent / analyse / solve (real world problems)	B1		
	They improve understanding / simplify (the real world)			
	Can be repeated/ adapted / refined			
	To show the relationship between variables/show trends			
	To show the relationship between variables/show tiends		(1)	
	339.25^2		(-)	
(b)	$[S_{ww} =]10036.45 - \frac{339.25^2}{12} = 445.57 \text{ (to 2 decimal places)*}$	B1*		
	12		(1)	
(c)	$S_{td} = \frac{-91.55}{11.5}$ or $S_{td} = 14.4 - \frac{29.5 \times 9.1}{12}$ or $S_{dd} = \frac{445.57}{11.5^2}$ or $S_{dd} = 75.9 - \frac{29.5^2}{12}$	M1		
	$S_{td} = -7.9608$ awrt -7.96 $S_{dd} = 3.3691$ awrt 3.37	A1A1		
	and	7 117 11	(3)	
(d)	91 55 "- 7 9608 "		(3)	
(4)	$[r=]\frac{-91.55}{\sqrt{445.57 \times 26.43}}$ or $[r=]\frac{-7.9608}{\sqrt{3.3691} \times 26.43}$	M1		
	= -0.8436 awrt - 0.844	Λ1		
	= - 0.8430 awn <u>- 0.844</u>	A1	(2)	
(e)	As the temp erature increases, gas/consumption decreases	B1ft	(2)	
(C)	745 the temperature increases, gas/consumption decreases	Dire	(1)	
(f)	$b = \frac{-91.55}{26.43} [= -3.4638]$	M1	(-)	
	$a = \frac{339.25}{12}$ -"-3.4638"× $\frac{9.1}{12}$ [= 30.897] or $a = \text{awrt } 28.3$ -"-3.4638"×awrt 0.76	M1		
	w = -3.46t + 30.9 *	A1*		
			(3)	
(g)	11.5d = -3.46t + 30.9 oe eg $d = -0.301t + 2.69$	B1	. ,	
			(1)	
(h)(i)	$2.0852(m^3)$ awrt 2.09	B1		
(ii)	the gas consumption will decrease by 0.3 m³	B1ft		
			(2)	
		Tota	ıl 14	
()	B1 for one valid reason why models are used		DO	
(a)	B0 for comments relating to time , cost , and predictions only. "Easy"/ "Easy to use" on i	its own 1	8 B0	
(b)	Ignore extraneous non-contradictory comments once B1 has been scored. B1* Correct numerical method to find S _{ww} shown with an answer awrt 445.57			
(c)	M1 Method to find S_{dd} or S_{td} (implied by awrt -7.96 or awrt -7.97 or awrt 3.37 or awrt 3.37	3 38)		
(0)	A1 awrt -7.96 or awrt 3.37 condone awrt -7.97 or awrt 3.38 for this mark	J.JUJ		
	A1 awrt -7.96 and awrt 3.37			
(d)	M1 for a correct method with $S_{ww} \neq 10036.45$			
\/	A1 awrt -0.844 correct answer scores 2 out of 2 an answer of awrt -0.843 scores	M1A0		
	B1ft for correct contextual interpretation with bold words o.e., ft "their (d)"			
(e)	Allow as gas increases, temp (erature) decreases o.e.			
	B0 for "their (d)" outside the range [-1, 1] Interpreting numerically as a gradient is B0.			
(f)	M1 for a correct numerical expression to find the value of b			
(f)	M1 for a correct numerical expression to find the value of b M1 for a correct method to find a allow "their b " or just b in the expression w – awrt $28.3 = "-3.46"(t$ – awrt 0.76)			
(f)	M1 for a correct method to find a allow "their b " or just b in the expression w – awrt $28.3 = "-3.46" (t$ – awrt 0.76)	o fraction	18.	
(f)	M1 for a correct method to find a allow "their b " or just b in the expression w -awrt $28.3 = "-3.46"(t$ -awrt 0.76) A1* (dep on M1M1) for correct given equation. Allow w = awrt $-3.46t$ + awrt 30.9 No		ıs.	
	M1 for a correct method to find a allow "their b " or just b in the expression w – awrt $28.3 = "-3.46" (t$ – awrt 0.76)		ns.	

Question	Scheme		
4 (a)	$0.2 = \frac{P(C \cap D)}{0.45}$	M1	
	$[P(C \cap D) =] 0.09$	A1	
		(2)	
(b)	$0.59 = P(C) + 0.45 - "0.09"$ [$\rightarrow P(C) = 0.59 - 0.45 + "0.09"$]	M1	
	= 0.23	A1	
		(2)	
	Notes	Total 4	
	Mark (a) and (b) together		
(a)	M1 for substitution of 0.2 and 0.45 into a correct equation for $P(C \cap D)$ (allow any rearrangement)		
	A1 oe correct answer scores 2 out of 2 Must be clearly identified as the answer to part (a). A correct Venn diagram on its own is not sufficient.		
	M1 for correct substitution of 0.59, 0.45 and "their a" into $P(C \cup D) = P(C) + P(D) - P(C)$		
(b)	Implied by "their (b)" – "their(a)" = 0.14 0.59 = P(C) + 0.45 is M0		
	Only ft 0 < "their (a)" < 1 If "their (a)" is outside this range, then M0		
	A1 oe correct answer scores 2 out of 2		

Question		Scheme			
£2332311	Speed (km/h)	Number of cars	fd		
	20, x < 25	54	10.8		
5 (a)	25 ,, x < 30	90	18		M1
	30 ,, x < 40	60	6		
	$90x = 54 \times 10$	or $18x = 10.8 \times 10$			M1
	height of 2 nd tallest bar =	6 (cm)			A1
					(3)
(b)	$30+15+\frac{2}{15}\times6$	= 45.8 , therefore	re <u>46</u> cars.		M1, A1
	50.5				(2)
(c)	$[Q_2 = 25 +] \frac{58.5}{90} \times 5$				M1
	= 28.25			awrt 28.3	A1 (2)
	24.75				
(d)(i)	$[Q_3 = 30 +] \frac{24.75}{60} \times 10$				M1
	= 34.12	25		awrt <u>34.1–34.3</u>	A1
(ii)	"34.125" – 25.14				M1
	= 8.99			awrt <u>9.0 – 9.1</u>	A1
(0)	0 0 (2.11) (0 0 (5 075)			(4)
(e)	$Q_2 - Q_1(3.11) < Q_3 - Q_2(3.11)$				M1
	therefore, positively skew	ed			A1 (2)
(f)	The suggestion is not suit	able as part (e) shows the	data is ske	wed/not symmetric.	B1ft
· · · · · · · · · · · · · · · · · · ·	20	1 ()		J	(1)
					Total 14
(a)	M1 for evidence of $fd = f$		-	30 as the tallest bar	
()	$\underline{\text{or}}$ 20,, $x < 25$ as the 2 nd			27 and a	
				c < 25 as the 2 nd tallest bar.	
	Implied by correct working seen or correct answer. Allow equivalent ratio equation. A1 6 cao Be careful the f.d. of the 3^{rd} bar is 6, so $60 \div 10 = 6$ on its own is M1M0A0.				
		y scores M1M0A0	80 00 - 10 ·	- 0 on its own is withtoau.	•
(b)	M1 for $30 + 15 + k$ when		oy 45.8) or	k+219-(54+90+30)	
ζ/	A1cao 45 or 46 (must be				
(c)	M1 for $\frac{58.5}{90} \times 5$ or $\frac{7}{11}$	$\frac{1}{2.5-54} = \frac{1}{144-54}$ or	${90}$ × 3 $^{\circ}$	$\frac{1}{144-112.5} = \frac{1}{90}$	
	Allow use of 113 instead	of 112.5			
	A1 for awrt 28.3	0 20 10 27		10	10
(d)(i)			or $\frac{35.25}{60}$	$\times 10$ or $\frac{40-m}{204-168.75} = $	<u>10</u> 60
	Allow use of any value from Allow use of any value from Allowert 24.1 to assert 24.2		200000 2 :	t of 2 unloss short	
(ii)	M1 for "their (d)(i)" subs			t of 2 unless obvious incorr	ect working
(II <i>)</i>		Allow 9 if correct work			
(e)				s. Must have 25.14 < " Q ₂ " <	<"Q ₃ "
χ-/	A1 dep on M1 and dep or	n their figures being consi	stent with p	ositive skew. Negative sk	
	Allow calculation of estin				
(f)	B1ft For not suitable and	a correct supporting reason	on which is	consistent with "their (e)"	

Question	Scheme			
6(a)(i)	$P(X > 508) = P(Z > \frac{508 - 502}{3} [= 2])$	M1		
	= 0.0228 awrt 0.0228	A1		
		(2)		
(ii)	$P(496 < X < 508) = 1 - 2 \times "0.0228" \text{ or } "0.9772" - (1 - "0.9772")$	M1		
	= 0.9544 awrt 0.954	A1ft (2)		
		(2)		
(b)	$"0.0228"^2 \times (1 - "0.0228")^2 \times 6$	M1 dM1		
	= 0.002978 (calc gives 0.002965) awrt $\underline{0.00297}$ or awrt $\underline{0.00298}$	A1 (3)		
(c)	$\frac{1038.51 - 1024}{\sigma} = 1.0364$	M1		
	$\sigma = \frac{1038.51 - 1024}{1.0364} = 14.000 \text{ (calc } 13.999)*$	A1*		
	(1.702)	(2)		
(d)(i)	$\pm \left(\frac{k-502}{3}\right) \qquad \text{and} \qquad \pm \left(\frac{1024-2k}{14}\right)$	M1		
	$\frac{k-502}{3} = \frac{1024-2k}{14}$ oe e.g. $14k-7028 = 3072-6k$	M1		
	k = 505	A1		
(ii)	$P(X > 505) = P(Z > \frac{"505" - 502}{3} [=1])$	M1		
	= 0.1587 awrt <u>0.159</u>	A1		
		(5)		
(a)(i)	Notes M1 for standardising with 508, 502 and 3 allow ±	Total 14		
(a)(1)	A1 awrt 0.0228 (dependent on M1 scored for standardising). Answer must be in part (a)	(i)		
(ii)	M1 ft their 0.0228	(-).		
	A1ft awrt 0.954 or from calculator 0.954499 so allow 0.9545 Correct answer score ft their part (a) i.e. $1-2 \times$ "their (a)" provided $0 <$ "their (a)" < 0.5	es 2 out of 2.		
<i>a</i> >	M1 For an expression in the form $p^2 \times (1-p)^2 \times A$ where A is an integer, A1 and p is a	a probability		
(b)	Allow A written in alternative forms eg 4C_2			
	M1 dep on first M1 for $A = 6$ oe			
	A1 awrt 0.00297 or awrt 0.00298 (allow in standard form). Correct answer scores 3 out	of 3.		
(c)	M1 an equation in the form $\frac{1038.51-1024}{\sigma} = z$ or $\frac{14.51}{\sigma} = z$ with 1.03,, $ z $, 1.04			
	A1* for a correct expression for σ with $z = 1.0364$ or better (calc 1.036433) seen and awrt 14			
(d)(i)	M1 for both standardisations seen or used in an equation Allow use of their 14 from part (c)			
	M1 Correct equation with compatible signs - need not be simplified Allow use of their 14	from part(c)		
	A1 505 (allow awrt 505 coming from "their 14" used). M1 for standardising with "505" 502 and 3 are with "1010" 1024 and 14 allow to			
(ii)	M1 for standardising with "505", 502 and 3 or with "1010", 1024 and 14 allow \pm , ft their value of k			
(11)	may be implied by a correct answer			
	A1 awrt 0.159 Correct answer scores M1A1 in (d)(ii)			

Question Number	Scheme	
7(a)	White $\frac{\frac{2}{8}}{\frac{6}{8}}$ White $\frac{6}{8}$ Yellow	
	$\frac{6}{9}$ Yellow $\frac{3}{8}$ White	B1 M1A1
	8 Yellow	(3)
(b)	$"\frac{3}{9}" \times "\frac{6}{8}" + "\frac{6}{9}" \times "\frac{3}{8}", = \frac{1}{2} \text{ oe}$	M1, A1
(c)	$1 - \frac{6}{9} \times \frac{5}{8}$ or $\frac{3}{9} + \frac{6}{9} \times \frac{3}{8}$, $= \frac{7}{12}$ oe	(2) M1, A1
(d)		(2)
(u)	$\begin{bmatrix} \frac{3}{9} \times \frac{2}{8} \\ \frac{7}{12} \end{bmatrix}, = \frac{1}{7} \text{ oe}$	M1, A1
		(2)
(e)	$\frac{\frac{1}{2}n}{n} \times \frac{\frac{1}{2}n-1}{n-1} \times \frac{\frac{3}{8}n}{n-2} \times \frac{\frac{1}{8}n}{n-3} = \frac{3}{235} \qquad \frac{4x}{8x} \times \frac{4x-1}{8x-1} \times \frac{3x}{8x-2} \times \frac{x}{8x-3} = \frac{3}{235}$ $\frac{3}{128}n^3(\frac{1}{2}n-1) = \frac{3}{235}n(n-1)(n-2)(n-3) \left[\rightarrow 63n^3 - 3198n^2 + 8448n - 4608 = 0 \right]$	M1M1
	$\frac{3}{128}n^3(\frac{1}{2}n-1) = \frac{3}{235}n(n-1)(n-2)(n-3) \Big[\to 63n^3 - 3198n^2 + 8448n - 4608 = 0 \Big]$	dM1
	$ \underline{\text{or}} \left[(3n-6)(21n^2-1024n+768) \right] \left[\Rightarrow (n \neq 2 : .) \right] 21n^2-1024n+768=0 $	A1
		(4)
(a)	Notes	Total 13
(a)	B1 1 st branches correct oe allow 0.3 and 0.6 M1 for one correct 2 nd branch 2/8 and 6/8 oe or 3/8 and 5/8 oe	
	A1 for both correct 2 nd branches 2/8 and 6/8 and 3/8 and 5/8 oe	
(b)	M1 for adding the two correct products of probabilities ft their probabilities	
	A1 0.5 oe Correct answer from no obvious incorrect working scores M1A1	
(c)	M1 correct method used. ft their probabilities	
(d)	A1 allow awrt 0.583 M1 for $\frac{p}{\sqrt[n]{7/2}}$ or $\frac{n}{7}$ where $n < 7$. num>denom is M0. Indeped. e.g. $\frac{\sqrt[n]{3}}{\sqrt[n]{2}} \times \sqrt[n]{\frac{2}{8}} \times \sqrt[n]{\frac{7}{12}}$ is M0	
	A1 allow awrt 0.143	
(e)	M1 for setting up the product of 4 probabilities with all of the denominators correct and equating to $3/235$ For the first term allow $\frac{1}{2}$ oe (condone RHS method in terms of n)	
	M1 a fully correct equation (condone RHS method in terms of <i>n</i>)	
	dM1 (dep on 2nd M mark) for forming a correct equation in terms of <i>n</i> removing all	
	terms in <i>n</i> from the denominator. For RHS method, only award if <i>x</i> is replaced by $\frac{n}{8}$	
	A1 (dep on all M marks) for a correct equation with $b = -1024$ and $c = 768$	
NB:	Trial and improvement method $\rightarrow n = 48$ satisfies the given conditions is M0M0M0A0	