Question	Scheme					
1 (a)	$2 \times 36 = 7$	$72 8 \times 4 = 32$	M1 A1			
1 (u)	2×30		(2)			
(1)	[12] (20	04-184) 2 [12] (204.5-184) 2				
(b)	[13]+	$\frac{120}{120} \times 2$	MI			
		40				
		$=\frac{1}{3}$ = awrt 13.3	AI			
			(2)			
(c)	Symmetr	rically distributed/No skew as the mean \approx median	B1			
			(1)			
(d)	$\frac{32}{4}$ +152	$+\frac{120}{2}[=220]$	M1			
	'220' '	219'	M1			
	408	407	111			
	$\frac{365}{365}$ or	0.2901 awrt 0.29	A1			
	1258					
		Notor	(3)			
		For any equivalent method to find either frequency	Total o			
		Maybe implied by either correct frequency				
(a)) M1 Also maybe implied by two frequencies which add to 104					
		Also maybe implied by a correct scale on the fd axis, at least 3 labels				
	A1	For 72 and 32				
		For any equivalent method to find the median				
		e.g. $\frac{Q_2 - 13}{2} = \frac{204 - 184}{2}$ or $\frac{15 - Q_2}{2} = \frac{304 - 204}{2}$				
(b)	M1	$V_{15-13} = 304 - 184$ $Q_2 - 13 = 204 - 184$				
		allow working downwards $[15] - \frac{(304 - 204)}{2} \times 2$				
	$\frac{120}{120}$					
	A1	awrt 13.3				
		For a correct identification of skew [which must either be symmetric/no skew or (sl	ight) negative			
		skew] with a correct supporting reason.				
(c)	B1	Allow use of 'their median' in the comparison provided 'their median' 13.2				
		Allow $Q_1 = awrt 10.8$ or awrt 10.9 and $Q_3 = awrt 15.1$ and $Q_2 - Q_1 > Q_3 - Q_2$ so ne	gative skew.			
		Comments referring only to the diagram (being symmetrical therefore no skew) sen	d to review			
(d)	M1	For a correct method to find the number of plants between 8cm and 14cm (may be i sight of 220)	mplied by			
	M1	For $\frac{n}{408} \times \frac{n-1}{407}$ or $\left(\frac{n}{408}\right)^2$ with 210 , <i>n</i> , 230				
	A1	awrt 0.29 may see $\frac{3025}{10404}$ from $\left(\frac{220}{408}\right)$				

Question Number		Scheme	Marks			
2(a)(i)	Mean = 7	Mean = 71.83 awrt 71.8				
(ii)	Standard	Standard deviation = $\sqrt{\frac{62802}{12} - \left(\frac{862}{12}\right)^2}$ or variance = $\frac{62802}{12} - \left(\frac{862}{12}\right)^2$				
	$\sqrt{73.47} = 8.571$ 8.57 * (to 3s.f.)					
(b)	$S_{xx} = 6280$	$S_{xx} = 62802 - \frac{862^2}{12} \left[= \frac{2645}{3} = 881.66 \right]$				
	$r = \frac{1}{\sqrt{413}}$	<u>512.67</u> .67×'881.66'	M1			
	= 0.8489	awrt 0.849	A1			
			(3)			
(c)	Mean =	$\frac{5}{9} \times (71.8 - 32)$	M1			
	= 22.11.	awrt 22.1	Alft			
	Standard	deviation = $\frac{5}{9} \times 8.57$	M1			
	= 4.76	awrt 4.76	A1			
			(4)			
(d)	r = '0.8	3489' same (as for x and y)	M1			
	r not affe	ected by (linear) coding oe	Al (2)			
	Neder					
		Notes	Total 12			
(a)(i)	B1	Notes awrt 71.8 Allow $\frac{431}{6}$ oe	Total 12			
(a)(i)	B1	Notes awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M	1 only			
(a)(i) (ii)	B1 M1	Notes awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$	1 only			
(a)(i) (ii)	B1 M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.	1 only			
(a)(i) (ii)	B1 M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$	(1 only (1 only .f.)			
(a)(i) (ii)	B1 M1 A1*	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).	1 only			
(a)(i) (ii)	B1 M1 A1*	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$	(1 only (1 only .f.)			
(a)(i) (ii) (b)	B1 M1 A1*	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the variance ft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)	.f.)			
(a)(i) (ii) (b)	B1 M1 A1* M1 M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx}	[1 only [1 only .f.)			
(a)(i) (ii) (b)	B1 M1 A1* M1 M1 A1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849	[1 only [1 only .f.)			
(a)(i) (ii) (b) (c)	B1 M1 A1* M1 M1 A1 M1 M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the variance ft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)	.f.)			
(a)(i) (ii) (b) (c)	B1 M1 A1* M1 M1 A1 M1 A1ft	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1ft their mean in part (a)	.f.)			
(a)(i) (ii) (b) (c)	B1 M1 A1* M1 M1 A1 M1 A1ft M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the variance ft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)A correct method to find the standard deviation	[1 only [1 only .f.)			
(a)(i) (ii) (b) (c)	B1 M1 A1* M1 M1 A1 M1 A1ft M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)A correct method to find the standard deviation(do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)	[1 only [1 only .f.)			
(a)(i) (ii) (b) (c)	B1 M1 A1* M1 M1 A1 M1 A1ft M1 A1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the variance ft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)A correct method to find the standard deviation(do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)awrt 4.76	[1 only [1 only .f.)			
(a)(i) (ii) (b) (c) (d)	B1 M1 A1* M1 M1 A1 M1 A1ft M1 A1ft M1 A1 M1 M1	Notesawrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S _{xx} (implied by awrt 882)A correct method to find PMCC using their value of S _{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)A correct method to find the standard deviation(do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)awrt 4.76 $r =$ their part (b) provided -1 , their part (b) , 1	[1 only [1 only .f.)			

Question Number		Scheme	Marks
3 (a)	$1-p, \frac{7}{8}$	and $\frac{9}{10}$ in the correct place on tree diagram	B1 (1)
(b)	$\frac{1}{8}p + \frac{1}{10}$	(1-p) = 0.11	M1 A1ft
	$p = \frac{2}{5}$		A1
			(3)
(c)	$\frac{2}{5} \times \frac{1}{8} =$	$\frac{1}{20}$	M1 A1ft
			(2)
(d)	P(Y12	$R) = \frac{\frac{2}{5} \times \frac{7}{8}}{1 - 0.11} \text{ or } P(Y12 R) = \frac{\frac{2}{5} \times \frac{7}{8}}{\frac{2}{5} \times \frac{7}{8} + \frac{3}{5} \times \frac{9}{10}}$	M1
	$=\frac{35}{89}$		A1
			(2)
		Notes	Total 8
(a)	B1	For a fully correct free diagram with all 3 correct labels. Allow if $1 - p$ is seen and crossed out/replaced with a numerical probability.	
(b)	M1	For $\frac{1}{8}p$ or $\frac{1}{10}'(1-p)'$ seen in an equation for p	
	A1ft	For a fully correct equation in p or correct ft equation based on their tree diagram	
	A1	oe correct answer scores 3 out of 3	
(c)	M1	For $p \times \frac{1}{8}$ ft their <i>p</i> , provided <i>p</i> is a probability	
	A1ft	For a correct answer ft their p , provided p is a probability. Correct answer scores 2 out of 2	
(d)	M1	For a correct ratio of probabilities. Can ft their <i>p</i> , provided <i>p</i> is a probability	
	A1	For $\frac{35}{89}$ (Allow awrt 0.393)	

Question Number		Scheme	Marks			
4 (a)	LQ = 28	or UQ = 48	B1			
	'48'+1.5(('48'-'28')[=78]	M1			
	90 > 78 s	so, 90 is an outlier*	A1*			
			(3)			
(b)	$b = \frac{1735}{1667}$	$\frac{5.6}{7.6}$ [=1.04]	M1			
	a = 38.2 -	-'b'(42.2)[=-5.72]	M1			
	s = -5.72	2+1.04f *	A1*			
			(3)			
(c)	For every marks	y extra mark (oe) in French/f, Spanish/s goes up (oe) by [on average] 1.04	B1			
	-	70 1.04 55 51 40	(1)			
(d)(i)	s = -5	$.72 + 1.04 \times 55 = 51.48$ awrt 51.5	MI Al			
(11)	s = -5	$./2 + 1.04 \times 18 = 13$	A (2)			
			(3)			
(e)	• T • 5 • 5	The first estimate is an interpolation/The second estimate is an extrapolation 5 is within the range of data/18 is not within the range of data 5 is closer to the mean/18 is further away from the mean	M1			
	so 51.5 is the more reliable estimate					
(2)	R1	Notes	10tal 12			
(a)	M1	Correct use of $\Omega_{+1} 5 \times (\Omega_{-\Omega})$ ft their LQ and their UQ provided their UQ > th	neir LO			
	A1*	For both LQ and UQ correct and identifying $90>78$ or 90 is an outlier Answer is given so no incorrect working can be seen				
(b)	M1 For a correct method to find the gradient					
	M1	For a correct method to find the intercept (division by 11 is M0)				
	A1*	Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$				
(c)	B1 For a correct numerical interpretation of the gradient in context which must include <u>marks</u> at least once					
(d) (i)	M1	For a correct substitution into the regression equation. May be seen in (i) or (ii) or implied by one correct answer				
	A1	awrt 51.5 Allow 51 or 52				
(ii)	A1	13 or awrt 13.0				
(e)	M1	For any equivalent correct reason Ignore extraneous non-contradictory comments For the second bullet point must be clear that they are referring to French marks (24 Do not allow comments that refer to the range of Spanish marks e.g. "51.5" is within of data/'13' is not within the range of data'	" <i>f</i> " 68). n the range			
	A 1	Do not allow '55 is closer to the median (than 18)' For clearly identifying the estimate from part (d)(i): 51.5 or 55 or (i) or 'the first action is the first action of the first action is the first action of the first action is the first action of the first acti	mate' etc			
	AI For clearly identifying the estimate from part (d)(i): 51.5 or 55 or (i) or 'the first estimate', etc.					

Question Number		Scheme				
5 (a)	$P(X < 38.8) = P\left(Z < \frac{38.8 - 40}{4}\right) \left[= P\left((Z < -0.3)\right)\right]$					
		=1-0.6179=0.3821*	A1*			
			(2)			
(b)	P(Qualif	$\dot{y} = 1 - (0.3821)^3$ or $1 - 0.3821 + 0.3821 \times (1 - 0.3821) + 0.3821^2 \times (1 - 0.3821)$	M1			
		[=0.9442]				
	P(X > 4	$4) = P\left(Z > \frac{44 - 40}{4}\right) \left[= P\left((Z > 1)\right)\right]$	M1			
	[=1-0.8413]=0.1587					
	P(X > 4	4 on 2nd attempt Qualify) = $\frac{0.3821 \times '0.1587'}{'0.9442'}$	M1			
		0.06422 awrt 0.0642	A1			
		Notes	Total 7			
(a)	M1	For standardising using 38.8, 40 and 4 (allow \pm)				
	A1*	A1* Must see 1 – 0.6179 or we must see 0.38209 or 0.38208 or better Answer is given so no incorrect working can be seen (but condone poor probability notation)				
(b)	M1	For a correct method to find the probability of qualifying				
	M1	For standardising using 44, 40 and 4 (implied by $1 - 0.8413$ or awrt 0.1587)				
	A1	awrt 0.16				
	M1	For a correct ratio of probabilities ft their 0.1587 and their 0.9442. Use of 0.6179 in the denominator is M0				
	A1 awrt 0.0642					

Question Number	Scheme					
6 (a)	$P(B A) = \frac{P(B \cap A)}{P(A)}$					
	$0.3 = \frac{P(B \cap A)}{r} \Longrightarrow P(B \cap A) = 0.3x$					
	$P(A \cup B)$	$= P(A) + P(B) - P(A \cap B)$		M1		
	0.65 = x	$+y - 0.3x \Longrightarrow 0.65 = 0.7x + y$,			
	14x + 20	y = 13 *		A1*		
				(3)		
(b)(i)	$P(B \cup C)$	$P(B) = P(B) + P(C) \text{ or } P(B \cap$	C) = 0	M1		
	$0.85 = \frac{1}{2}$	x+2y		A1		
(ii)	Attempt	to solve the 2 equations similar	ultaneously	M1		
	x = 0.5 $y = 0.3$					
				(4)		
	P(B A)	=0.3 and	$P(A) \times P(B) = '0.5' \times '0.3'$ and $P(A = B) = 0.2 \times 10.5' \times 10.3'$	2.61		
(c)	P(B) =	'0.3'	$P(A \cap B) = 0.5 \times 0.5$ or $P(A \cap B) = 0.5^{2} + 0.3^{2} = 0.65$	MI		
	So, A and B are statistically independent					
		50, 11 und <i>D</i> u		(2)		
		I	Notes	Total 9		
(a)	M1	Use of $P(B A) = \frac{P(B \cap A)}{P(A)}$ assuming independence is M0 e.g. $P(B \cap A) = P(B) \times P(A)[=xy]$				
		May be implied by $P(B \cap A)$) = 0.3x (may be seen on a Venn diagram)			
	Use of $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ with substitution of $P(A \cup B)$, $P(A)$					
	NI I	M1 (the equation may be seen in a Venn diagram) 0.65 = x + y - 0.3x implies M1M1				
	A1*	Answer is given so no incorrect working can be seen				
(b)(i)	M1	Use of $P(B \cup C) = P(B) + P(C)$ or sight of $P(B \cap C) = 0$				
	A1	Any correct second equation in <i>x</i> and <i>y</i> which need not be simplified.				
(ii)	M1	Attempt to solve the 2 equations simultaneously. Either a correct substitution seen or a correct method to eliminate x or y				
	A1	For $x = 0.5$ and $y = 0.3$				
	M1	lities needed for a test for independence (probabilities m and y	nust be			
	IVII	$P(B A)$ and $P(B)$ or $P(A), P(B)$ and $P(A \cap B)$				
		For	$P(A \cap B)$ we must see working shown			
	A1ft For a correct ft conclusion for their values of x and y (must have scored M1)					

Question Number	Scheme					Marks	
7 (a)	$\frac{k+4}{8} = 1$ [k = 4*]					B1*	
						-	(1)
	x	1	2	3	4		
(b)	P(X = x)	$\mathbf{x}) \qquad \frac{1}{13}$	$\frac{7}{26} - \frac{1}{13} = \frac{5}{26}$	$\frac{15}{26} - \frac{7}{26} = \frac{4}{13}$	$1 - \frac{15}{26} = \frac{11}{26}$		A1
	-		-				(3)
(c)	4						B1ft
							(1)
(d)	$\mathrm{E}(X) = 1 \times \cdot$	$\frac{1}{13} + 2 \times \frac{5}{26} + 3 \times \frac{4}{13}$	$4 \times \frac{11}{26} = \frac{40}{13}$	Y $P(Y = y)$	$ \begin{array}{cccc} 7 & 20 \\ \hline 1 \\ 13 & 5 \\ \hline 26 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	$\mathrm{E}(X^2) = 1^2$	$\times \frac{1}{13} + 2^2 \times \frac{5}{26} + 3^2 \times$	$\left \frac{4}{13}\right + 4^2 \times \left \frac{11}{26}\right = \frac{13}{13}$	$\left[E(Y) = 7 \times \frac{1}{13} + \frac{1}{13} \right]$	$20 \times \frac{5}{26} + 33 \times \frac{4}{12}$	$\frac{1}{3}' + 46 \times \frac{11}{26}' = 34$	M1
	$\operatorname{Var}(X) =$	$\left \frac{135}{13}-\left(\frac{40}{13}\right)\right ^{2}$	$\left[\frac{155}{169}\right]$	$E(Y^{2}) = 7^{2} \times \frac{1}{13}$ [=1311]	$'+20^2 \times '\frac{5}{26}'+33^2$	$2^{2} \times \frac{4}{13} + 46^{2} \times \frac{11}{26}$	M1
	Var(13X	$(-6) = 13^2 \times \frac{155}{169}$; ,)	Var(13X-6)	6) = '1311'-'34	1 ²	M1
	= 155						A1
			N	- 4			(5)
		<i>k</i> +4		4+4			1018110
(a)	B1*	$\frac{n+1}{8} = 1$ oe	Allow verification	method $\frac{1}{8} =$	1 provided they	k = 4	
(b)	M1	For a correct met (implied by any c	hod to find one pro	bability from $x =$ lity from $x = 2, x =$	2, x = 3 or x = 4 = 3 or $x = 4$)	ŀ	
	M1	For a correct met	hod to find a secor	Ind probability from $r = 2$	n x = 2, x = 3 or r = 3 or r = 4)	x = 4	
	For a fully correct probability distribution.						
	A1 Need not be in a table, but 1, 2, 3 and 4 must be associated with correct probability						
(c)	B1ft Must be consistent with the highest probability in their distribution in part (b). If no distribution is found, then the answer must be 4						
(d)	M1 For a correct method to find $E(X)$ (implied by awrt 3.08) ft their table use of $\sum xF(x)$ is or for a correct probability distribution for $13X - 6$ ft their probabilities in (b)						c) is M0
	M1 For a correct method to find $E(X^2)$ (implied by awrt 10.4) ft their table use of $\sum x^2 F(x)$						(x) is M0
		Use of $E(X^2) - I$	$E(X)^2$ ft their $E(X)$	(2^{2}) and their $E(X)$	or		
	MI for a correct method to find $E(Y^2)$ ft their table						
	M1	Use of $13^2 \operatorname{Var}(X)$ or use of $F(Y^2)$) ft their Var(X) - $F(Y)^2$ ft their $F(X)$	(Y^2) and their $F(Y)$			
	A1	Cao					

Question Number	Scheme					Marks
	P(X > X)	$\mu + 2k \big) = 0.2$	or	$P(X < \mu - 2k) = 0.2$	2	
8 (a)	or $P(X \cdot$	$<\mu+2k$) = 0.8	or	$\mathbf{P}(X > \mu - 2k) = 0.8$		MI
	$\frac{\mu+2k-6}{6}$	$\frac{\mu}{m} = 0.8416$	or	$\frac{\mu - 2k - \mu}{6} = -0.8416$		M1 A1
	<i>k</i> = 2.52	248			awrt 2.52	A1
						(4)
(b)	$P\left(Y > \frac{3}{2}\right)$	$\mu \right) \Rightarrow \mathbb{P}\left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma}\right) \Rightarrow \mathbb{P}\left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma}\right)$	$\left(Z > \frac{\frac{1}{2}\mu}{\sigma}\right)$			M1
	$\mu = \frac{3}{2}\sigma^2 =$	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\left(\frac{3}{2}\sigma^{2}\right)}{\sigma}\right) = P$	$\left(Z > \frac{3}{4}\sigma\right)$			
	$\sigma = \sqrt{\frac{2\mu}{3}}$	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sqrt{\frac{2\mu}{3}}}\right) = \left[P\left(Z\right)\right]$	$> \frac{1}{2} \sqrt{\frac{3\mu}{2}} $			M1
	or $\frac{\frac{1}{2}\mu}{\sigma} =$	k and $2\mu = 3\sigma^2$				
	$\frac{3}{4}\sigma = 1.$.5 or $\frac{1}{2}\sqrt{\frac{3\mu}{2}} = 1.5$ or 3σ	$\sigma^2 = 6\sigma$			M1
	$\mu = 6$ onl	ly, $\sigma = 2$ only				A1 A1
						(5)
		For any of the given tail p	Notes robability stateme	ents which may be seen on a	diagram	Total 9
(a)	M1	Also may be implied by av	wrt ±0.84 seen			
	M1	For standardising using μ Implied by $(\pm)\frac{k}{3} = (\pm)0.8$	and 6 and setting 84 or better	g = to z value, where $0.8 < z$	z < 0.9	
	A1	For a fully correct standar	disation with a co	pmpatible z value. $ z $ must b	e 0.8416 or b	etter
	A1	awrt 2.52 (Allow 2.525)	Answer only 2.52	is M1M1A0A1 Answer on	ly 2.5248 is N	/1M1A1A1
(b)	M1	For standardising using $\frac{3}{2}$	μ , μ and σ			
	M1	For substitution of $\mu = \frac{3}{2}c$	σ^2 into their stan	dardisation or setting up two	o equations in	μ and σ
	M1	For their expression for σ	only or μ only	used with ±1.5		
	A1	$\mu = 6 \text{ or } \sigma = 2$				
	A1	$\mu = 6$ and $\sigma = 2$ must re	eject any other va	lues if found		