Question Number	Scheme	Marks
1. (a)	[Area = $k \times$ frequency $\rightarrow 16.5 = k \times 12 \rightarrow$] Area = $\frac{16.5}{12} \times 18$ oe	M1
	= 24.75 (cm ²)	A1 (2)
(b)	fd method $\frac{24}{58-55}[=8]$ and $\frac{35}{55-50}[=7]$ or Area method $\frac{16.5}{12} \times 24[=33]$ and $\frac{16.5}{12} \times 35[=48.125]$ or $\frac{16.5}{12} \times \frac{24}{3}[=11]$ and $\frac{16.5}{12} \times \frac{35}{5}[=9.625]$	M1
	Let $h = \text{height of the } 2^{\text{nd}} \text{ tallest bar}$ $[h =] \frac{10}{8!} \times 7' \text{ or } [h =] \frac{"48.125" \times 10 \times 3}{5 \times "33"} \text{ or } [h =] "9.625" \times \frac{10}{"11"} = 8.75 \text{ (cm)}$	dM1
	<u>6.75 (</u> CIII)	(3)
(c)(i)	$[Q_2 =]50 + \frac{7}{35} \times 5$ or $[Q_2 =]55 - \frac{28}{35} \times 5$	M1
	$= \underline{51} \text{ (cm)}$	A1
(ii)	$[Q_3 =]55 + \frac{2}{24} \times 3$ or $[Q_3 =]58 - \frac{22}{24} \times 3$ and "55.25"-45	M1
	= 10.25 (cm)	A1 (4)
(d)	<u>"55.25"-2("51")+45</u>	M1
	"55.25"-45 [=-0.17073 < 0] negative [skew].	A1ft
	Notes	(2) [11]
(a)	M1 allow equivalent eg $16.5 \times \frac{3}{2}$	
(b)	A1 for 24.75 allow 24.8 M1 correct method for finding the frequency density or area for the highest and 2nd high Allow if 8 and 7 seen or 33 and 48.125 seen or 9.625 rather than 48.125 and/or 11 see than 33	
	dM1 dep on previous M mark awarded. A fully correct expression for h or a fully correct to enable h to be found $eg \frac{"33"}{10 \times 3} = \frac{"48.125"}{5h}$	equation
	A1 8.75 oe NB answer of 8.75 seen as final answer $3/3$	
(c)(i)	M1 for $50 + \frac{7}{35} \times k$ or $55 - \frac{28}{35} \times k$ or $\frac{Q_2 - 50}{k} = \frac{60 - 53}{88 - 53}$ or $\frac{55 - Q_2}{k} = \frac{88 - 60}{88 - 53}$ where	e 4,, k,, 6
	oe (condone use of $n + 1$ ie 7.5 rather than 7, 27.5 rather than 28 or 60.5 rather than 60 A1 51 (condone for use of $n + 1$ awrt 51.1)))
(ii)	M1 $55 + \frac{2}{24} \times t$ or $58 - \frac{22}{24} \times t$ or $\frac{Q_3 - 55}{t} = \frac{90 - 88}{112 - 88}$ or $\frac{58 - Q_3}{t} = \frac{112 - 90}{112 - 88}$ oe whe 2,, t , 4	re
	and using "their Q_3 "-45	
	(condone use of $n + 1$ ie 2.5 or 2.75 rather than 2, 21.5 or 21.25 rather than 22 or 9 90.75 rather than 90) All 10.25 oe eg 41/4 allow 10.3 from correct working	0.5 or

(d) M1 substitution of their values from (c) seen or awrt -0.17 or -7/41
A1ft dependent on M1 being scored. Correct description of skewness consistent with their values from part (c) ignore the final answer if working shown. Only allow no skew or symmetrical if their value should be 0 Ignore correlation.

Question Number	Scheme	Marks
2. (a)	$[S_{tt} =]82873 - \frac{1361^{2}}{40} \qquad [S_{ct} =]83634 - \frac{1634 \times 1361}{40}$ $[S_{tt} =]36564.975 \qquad [S_{ct} =]28037.15$	M1
	$[S_{tt} =]36564.975$ $[S_{ct} =]28037.15$	A1 A1 (3)
(b)	$[r=]$ $\frac{'28037.15'}{\sqrt{28732.1\times'36564.975'}} = 0.865$ awrt $\underline{\textbf{0.865}}$	M1 A1
(c)	In general, films with higher cost have higher ticket sales .	B1ft (1)
(d)	$[b=]\frac{'28037.15'}{28732.1}[=0.9758]$	M1
	$[a=]\frac{1361}{40}$ -'b'× $\frac{1634}{40}$ or 34.025 - "b"× 40.85	M1
	t = -5.8369 + 0.9758c* $t = awrt -5.84 + awrt 0.976c*$	A1cso* (3)
(e)	$t = -5.84 + 0.976 \times 90$ $t = £82 \text{ million}$ awrt £82 million	M1 A1 (2)
(f)	$-5.84 + 0.976c < 0.8c \rightarrow 0.176c < 5.84$ c < 33.1818 $c < awrt (£) 33.2$	M1 A1 (2)
	Notes	Total 13
(a)	Mark part (a) and (b) together M1 either correct expression A1 36 564.975 or exact equivalent A1 28037.15 or exact equivalent SC M1A1 A0 for awrt 36565 and awrt 28037	
(b)	M1 valid attempt at r with their $S_{cc} \neq 28732.1$ and their $S_{ct} \neq 83634$ A1 awrt 0.865	
(c)	B1ft only ft if $ r < 1$ For a correct comment in context. Must include words underlined (Allow use of c for cost and t for sales) and be compatible with their value in (b). Must have that as one increases/decreases the other increases/decreases. Allow other words eg goes up Do not accept t and c are similar.	
(d)	M1 correct numerical expression for b ft their $S_{ct} \neq 83634$ Implied by awrt 0.97	58 or better
	M1 attempt at a with their value of b substituted. Implied by awrt 5.837 or bette A1*cso answer given so both method marks must be awarded and no incorrect value. Either $b = 0.9758$ (or better) or $a = 5.837$ (or better) must be seen along with the correct equation in t and t 0 (do not allow fractions).	vorking
(e)	M1 for substituting $c = 90$ into $t = \text{awrt} -5.84 + \text{awrt} \ 0.976c$ Implied by awrt 82 A1 £82 million (must include units. Allow 82 million pounds). Allow awrt £82 million	
(f)	M1 forming inequality (allow $>$ or $<$ or $=$ or $,$ or $$) with $0.8c$ A1 correct inequality in c (allow any letter) with awrt 33.2 (units not required). Do not allow as a fraction. Ignore any lower limit. Condone awrt 33200000 or awrt 33.2 million	

Question Number	Scheme	Marks	
3. (a)	$\left[\overline{x} = \right] \frac{-1.2}{8} [= -0.15]$ $ -0.15 = \frac{\overline{b} - 21}{2} \text{ oe}$ $\left[\overline{b} = \right] \frac{165.6}{8}$	M1	
	$\left[\overline{x} = \right] \frac{-1.2}{8} [= -0.15]$ $ -0.15 = \frac{\bar{b} - 21}{2} \text{ oe}$ $\left[\overline{b} = \right] \frac{165.6}{8}$	M1	
	= 20.7 (cm)	A1 (3)	
(b)	$\sigma_{x} = \sqrt{\frac{5.1}{8} - \left(\frac{-1.2}{8}\right)^{2}} \left[= \sqrt{0.615} = 0.784 \right]$ $\sigma_{b} = 2 \times 0.784$	M1	
	$\sigma_b = 2 \times 0.784$ $= \text{awrt } \underline{\textbf{1.57}} \text{ (cm)}$	1	
(c)(i)	$x_9 = 1.2 \rightarrow b_9 = 1.2 \times 2 + 21$ oe or $9 \times 21 - 8 \times 20.7$ [= 354.6] $= 23.4$ (cm)	(3) M1 A1	
(ii)	$\sum x^2 = 5.1 + 1.2^2 \left[= 6.54 \right] \qquad \Rightarrow \sigma_x = \sqrt{\frac{5.1 + 1.2^2}{9} - 0^2}$	M1	
	$= \operatorname{awrt} 0.852 $	(cm) A1 (2)	
	Notes	Total 10	
(a)	1^{st} M1 for correct expression for \overline{x} ignore 1^{st} M1 for correct expression letter	sion for $\sum b$	
	letter $2^{\text{nd}} \text{ M1 Using equation. "} \bar{x} \text{"} = \frac{\bar{b} - 21}{2} \text{ where}$ $2^{\text{nd}} \text{ M1 use of "} \sum b' \div n \text{ where '} \sum b' > 18$		
	$-1.2 < \overline{x} < 1.2$ Condone b rather than \overline{b} At 20.7 oe		
(b)	1 st M1 correct method for σ_x or σ_x^2 or $5.1 = \frac{\sum b^2 - 42 \times "168.6" + 8 \times 441}{4}$ o	$r \sum b^2 = 3447.6$	
	2^{nd} M1 for use of 2 × their σ_x (or 4 × their σ_x^2) (adding 21 is M0) or		
	$\frac{"3447.6"}{8} - \left(\frac{"165.6"}{8}\right)^2 \text{ or } \sqrt{\frac{"3447.6"}{8} - \left(\frac{"165.6"}{8}\right)^2}$		
	A1 awrt 1.57 Allow $\frac{\sqrt{246}}{10}$ (allow $s_b = \text{awrt } 1.68 \text{ or } \frac{4\sqrt{246}}{35}$ from an $n - 1$	1 method)	
(c)(i)	M1 for a correct equation using $x_9 = 1.2$ to enable b_9 to be found eg 1.2 =	$=\frac{b-21}{2}$	
	or a correct method to find $\sum x$ for the 9 squirrels. ft their 20.7 A1 23.4 oe		
(ii)	M1 for $5.1 + "(\pm 1.2)"^2 [= 6.54]$ seen ft their x_9 Condone $5.1 + (\pm 9.6)^2$	[= 97.26]	
	A1 awrt 0.852 Allow $\frac{\sqrt{654}}{30}$ (allow $s_x = \text{awrt 0.904 from an } n - 1 \text{ method}$	d)	

Question Number	Scheme	Marks
4.	$[F(6) =] \frac{45}{77}$ and $[F(7) =] \frac{60}{77}$	M1
	$[P(W=7) = F(7) - F(6) =] \frac{60}{77} - \frac{45}{77} = \frac{15}{77} $ and $[P(W=8) = F(8) - F(7) =] 1 - \frac{60}{77} = \frac{17}{77}$	M1
	$E(W) = 6 \times \frac{45}{77} + 7 \times \frac{15}{77} + 8 \times \frac{17}{77}$ $[= 6 \times 0.5844 + 7 \times 0.1948 + 8 \times 0.22077]$	M1
	$= \frac{73}{11} \text{ or awrt } \underline{6.64}$	A1
	Notes	[4]
	1st M1 for $\frac{45}{77}$ and $\frac{60}{77}$ seen Allow awrt 0.58 and awrt 0.78. may be seen unsimplified Implied by 2 nd M1 or by seeing $\frac{15}{77}$ 2 nd M1 for " $\frac{60}{77}$ "-" $\frac{45}{77}$ " and 1-" $\frac{60}{77}$ " allow awrt 0.195 or 0.20 and awrt 0.22 ft their F(6) and F(7) if working shown 3 rd M1 for an attempt to calculate E(W) with P(W = 6) correct and the correct method or value for at least one of P(W = 7) or P(W = 8) A1 $\frac{73}{11}$ oe or awrt 6.64	

Question Number	Scheme	Marks
5. (a)	$P(W > 70) = P\left(Z > \frac{70 - 80}{8} [= -1.25]\right)$	M1
	= P(Z > -1.25) or P(Z < 1.25)	A1
	= 0.8944 awrt 0.894	A1 (3)
(b)		B1
	$\pm \left(\frac{k-80}{8}\right) = \underline{1.0364}$	M1 B1
	k = 88.29 awrt 88.3	A1 (4)
(c)	$P(W < 66) = P\left(Z < \frac{66 - 80}{8} [= -1.75]\right) [= 0.0401 \text{ (calc } 0.040059)]$	M1
	$0.25 \times P(Z < -1.75) = 0.010025 (calc 0.0100147)$ or $0.25 \times (1 - P(Z < 1.75))$	dM1
	$\frac{y-80}{8} = \underline{-2.32}(63)$	M1 A1
	y = 61.389 awrt <u>61.4</u>	A1 (5)
	Notes	(5) Total 12
(a)	M1 for standardising with 70, 80 and 8 (allow \pm) 1 st A1 $z = \pm 1.25$ 2 nd A1 awrt 0.894 (calc 0.894350) NB do not ISW so an answer of 0.1056	is A0
(b)	1st B1 for either correct probability statement. Allow " for < and …for > (may be implied by $z = \text{awrt } 1.04$) M1 standardising with 80, 8 and equating to z , where $1 < z < 2$ 2nd B1 $z = \pm 1.0364$ or better (calc 1.036432) A1 awrt 88.3 (calc 88.291459) NB awrt 88.3 implies 1st B1 and M1 but not the 2^{nd} B1 they could get B1M1B0A1 (Answer only 88.291 to 88.292 scored 4 out of 4)	
(c)	1 st M1 standardising with 66, 80 and 8 (allow \pm) or seeing awrt 0.0401 in working 2 nd dM1 (dep on 1 st M1) 0.25×"their P(Z < -1.75)" or 0.0401 – 0.030075 or seeing [0.75×0.0401+0.9599 =] 0.9899	
	3^{rd} M1 for standardising and equating to z, where $ z > 2$ 1^{st} A1 correct standardisation equation with compatible signs and 2.32 ,, $ z $,, 2^{rd} A1 awrt 61.4 (allow awrt 61.3)	2.34

Question Number	Scheme	Marks
6. (a)(i)	$[P(A) =] \qquad \underline{0.25}$	B1
(ii)	$ [P(A \mid B) =] $	B1
(iii)	$\left[P(A \mid C) = \right] \ \underline{0}$	B1
	g 2	(3)
(b)	$\frac{q}{a+r} = \frac{3}{5}$	M1
	$\frac{q}{q+r} = \frac{3}{5}$ $0.13 + p + s = \frac{7}{10}$ $p+q+r+s+0.12+0.13=1$	N/1
	$0.13 + p + s = \frac{10}{10}$	M1
	p+q+r+s+0.12+0.13=1	M1
	Solving simultaneously to get	
	$\frac{q}{0.3 - 0.12} = \frac{3}{5} \text{ or } 0.3 = 0.12 + 1.5r + r \text{ or } 0.3 = 0.12 + q + \frac{2}{3}q \text{ oe}$	dM1
		A1
	$q = \underbrace{0.108}_{r}$ $r = \underbrace{0.072}$	A1
		(6)
(c)	$\frac{5}{8} = 0.13 + 0.12 + 0.072 + s$ oe	M1
	$s = \underline{0.303}$	A1
	Nodos	(2)
(a)(i)	Notes B1 0.25 oe	Total 11
(ii)	B1 1 cao	
(iii)	B1 0 cao	
(b)	1 st M1 correct expression for $P(C \mid D) = \frac{3}{5}$. Allow $P(D)$ for $q + r$	
	$2^{\text{nd}} \text{ M1 correct expression for } P(B' \cap D') = \frac{7}{10}$	
	$\begin{bmatrix} 3^{\text{rd}} \text{ M1 A correct equation or use of sum of probabilities} = 1 \end{bmatrix}_{NR} = \begin{bmatrix} 3 \\ -0.12 \\ -0.12 \end{bmatrix}$	
	3 rd M1 A correct equation or use of sum of probabilities = 1 must imply correct equation eg may ft their $\mathbf{NB} \frac{3}{10} = 0.12 + q + q$	<i>r</i> 1S
	$P(B' \cap D') = \frac{7}{10} \text{ Implied by } q + r = 0.18$ 2ndM1 3rdM1	
	or $P(D) = 0.18$	
	4 th dM1 (dep on all 3 previous M1 being awarded) solving to obtain a correct equivalent single variable. Implied by a correct value for <i>q</i> or <i>r</i>	ation in a
	$1^{\text{st}} \text{ A1} q = 0.108 \text{ or } \frac{27}{250} \text{ oe}$	
	$2^{\text{nd}} \text{ A1 } r = 0.072 \text{ or } \frac{9}{125} \text{ oe}$	
(c)	M1 correct expression for $P(B \cup C') = \frac{5}{8}$ ft their value for r . Allow use of the let	ter r
	eg $\frac{5}{8} = 0.13 + 0.12 + r + s$ oe We will condone values of r outside the range 0	< r <1
	A1 $s = 0.303$ oe	

Question Number	Scheme	Marks
7. (a)	$\left[\frac{0.1}{0.8}\right] = \frac{1}{8}$	B1 (1)
(b)	$[0^2 \times 0.1 +]5^2 \times 0.2 + 10^2 \times 0.7 = 75*$	B1*cso
(c)	$E(X) = [0 \times 0.1 +]5 \times 0.2 + 10 \times 0.7 [= 8]$	(1) M1
	$Var(X) = 75 - ('8')^2$	M1
	$Var(X) = \underline{11}$	A1 (3)
(d)	$Var(4-3X) = 3^2 \times Var(X)[=3^2 \times "11"]$	M1
	= 99	A1ft (2)
(e)	$ \begin{array}{ll} P((0,5),(0,10),(5,10)) & P((0,0),(5,5),(10,10) \\ = 0.1 \times 0.2 + 0.1 \times 0.7 + 0.2 \times 0.7 \\ \left[= 0.02 + 0.07 + 0.14 \right] & \left[= 0.5 \left(1 - \left(0.01 + 0.04 + 0.49 \right) \right) \right] \end{array} $	M1M1
	$= \underline{0.23}$ $= \underline{0.23}$	A1 (3)
(f)	Products: 0, 25, 50, 100	B1
	$P(D=0) = 0.1 + 0.1 - 0.1 \times 0.1 = 0.19$ $P(D=25) = 0.2^2$	M1 M1
	$P(D=50) = 2 \times 0.2 \times 0.7$ $P(D=100) = 0.7^2$	
	D 0 25 50 100	A1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	Notes	(4)
	Notes 1	Total 14
(a)	B1 — oe Allow 0.125 Do not ISW	
(b)	B1*cso correct expression and 75 with no errors seen. Allow $5^2 \times 0.2 + 10^2 \times 0.$	7 = 75
(c)	M1 correct method to find mean. If no method seen award if 8 is seen M1 attempt at expression for variance ie 75 –(their $E(X)$) ² A1 11 cao	
(d)	M1 Use of $(-3)^2 \times \text{Var}(X)$ (condone 3 rather than -3 and missing bracket if fi	nal answer is
	correct) or $4^2 \times 0.1 + (-11)^2 \times 0.2 + (-26)^2 \times 0.7 - (-20)^2$ condone 11, 26 a	and 20
(e)	A1ft 99 or ft 9 × 'their (c)' 1 st M1 for at least one correct product. NB may be combined eg 0.3×0.7 but not in the numerator or denominator of a fraction 2 nd M1 a fully correct expression oe e.g. 0.1×0.2+0.3×0.7	
(f)	A1 0.23 oe B1 all 4 correct products with no incorrect extras unless they have a probability of 0	
	associated with them 1 st M1 A correct method to find 1 of the 4 probabilities. Does not need to be as the correct product $\mathbf{ALT} \ \mathbf{P}(D=0) = 0.1 \times 0.1 + 2 \times 0.1 \times 0.2 + 2 \times 0.1 \times 0.7 \ [= 0.19]$	ssociated with
	2 nd M1 A correct method to find 3 of the 4 probabilities or 2 of the 4 probabilities total of the 4 probabilities is 1 Must be associated with the correct pro A1 all four correct probabilities (oe) associated with the correct products	ities if the duct