S1_2021_06_MS

Question Number	Scheme	Marks	
1. (a)	First Counter Second Counter A Red H 3 Blue 3 Vellow 12 13 14 15 16 17 18 19 19 10 11 12 12 12 12 13 14 15 16 17 18 19	B1 B1	
(b)	$P(Y) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} + \frac{2}{12} = \left\{ \frac{42}{132} \text{ or } \frac{7}{22} \right\} \underline{\text{or}}$ $P(\text{Yellow and two counters}) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} = \left\{ \frac{20}{132} \text{ or } \frac{5}{33} \right\}$	(2) M1	
	$\frac{P([Y \cap R] \cup [Y \cap B])}{P(Y)} = \frac{\frac{20}{132}}{\frac{42}{132}}$	M1	
	$=\frac{20}{42} \underline{\text{or}} \frac{10}{21} \text{oe}$	A1 (3) [5 marks]	
	Notes		
(a)	$1^{\text{st}} \text{ B1} \text{for the remaining probs on first set of branches and at least one on 2^{\text{nd}} \text{ set}}$ $2^{\text{nd}} \text{ B1} \text{for a fully correct tree diagram with all the correct probabilities}}$		
(b)	1 st M1 for a correct ft expression for P(<i>Y</i>) or P(Yellow and two counters)ft their tree diagram eg $1 - \frac{7}{12} \times \frac{6+3}{11} - \frac{3}{12} \times \frac{7+2}{11}$ NB: The method is implied by the numbers in curly brackets but we do not need to see them to award the mark.		
	2 nd M1 for a correct ratio formula (symbols or words) <u>and</u> at least one correct fully correct ft ratio. Do not follow through probabilities > 1 or < 0 A1 for $\frac{10}{21}$ or exact equivalent. (Allow $0.\dot{4}7619\dot{0}$) NB if an exact correct fraction is not given and an awrt 0.476 is given	-	
	get M1M1A0 if from correct working Generally if the answer is correct then award full marks (unless from incorrect working) or notes indicate otherwise	obvious	

-	stion nber		Scheme	Mar	rks
2.	(a)	B and C		B1	(1)
	(b)	A and C	independent gives:		(1)
			$65 = 0.13$ or $0.65 \times (r+0.13) = 0.13$ or $0.65 \times (0.48 - s) = 0.13$	M1	
		P(C = 0.2 or $r + 0.13 = 0.2$ or $0.48 - s = 0.2$	A1	
		$\mathbf{D}(\mathbf{A}) \perp \mathbf{r}$	$r \{= 0.2 - 0.13\} = 0.07$ or $s \{= 0.48 - 0.2\} = 0.28$ r + s = 1 or $0.65 + 0.07$ $r + s = 1$ or $0.65 + 0.28$ $r + r = 1$	A1 M1	
		$\Gamma(A) + I$	s = 1 - 0.72 = 0.07 + s = 1 of 0.03 + 0.28 + 7 = 1 s = 1 - 0.72 = 0.28 and r = 1 - 0.93 = 0.07	A1	
					(5)
	(c)	$\mathbf{P}[(B\cup 0$	C] = "0.2" + q or 0.13 + "0.07" + q	B1ft	
			$\mathbf{P}(A \cap C') = p + q \{= 0.52\}$	B1	
		$\{\mathbf{P}[(A \in$	$(C') \cap (B \cup C) = q \Longrightarrow \qquad "(p+q)" \times "(0.2+q)" = q \text{ or}$		
			$"\times"(0.13 + "0.07" + q)" = q$ or $"(p+q)"\times"(1-s-p)" = 0.52-p$	M1	
		```	$p + q = 0.52$ ] $0.52 \times "(0.2 + q)" = q \text{ or } 0.52(0.72 - p) = 0.52 - p$	M1	
				IVI I	
			$q = \frac{13}{60}$	A1	
			—	A 1	
			$p = \frac{91}{300}$	A1	
			Notes	[12 ma	(6) rkcl
	(a)	B1	<i>B</i> and <i>C</i> seen. If they include <i>A</i> then B0	[12 IIIa	<u>II K5j</u>
	<b>(b)</b>	1 st M1	for a correct equation for $P(C)$ using independence.		
		1 st A1	for $P(C) = 0.2$ correct linear equation for <i>r</i> or <i>s</i>		
		2 nd A1	for either $r = 0.07$ or $s = 0.28$		
		2 nd M1	for using $\sum p = 1$ Allow letter r and s or their values for r and s prov	vided they	are
			probabilities.		
		3 rd A1	for both $s = 0.28$ and $r = 0.07$		
		1 St D 1 ft	NB: The quotations around the 0.07 ("0.07") imply that we ft their v		
	(c)	1 st B1ft	for an expression (in q) for $P(B \cup C)$ ft their value of r or their "0.2"		
		2 nd B1	eg 0.13 + "their $r$ " + $q$ Implied by 1 st or 2 nd M1 below. for a correct expression for P( $A \cap C'$ ) in terms of $p$ and $q$ or 0.52		
			Implied by $1^{\text{st}}$ or $2^{\text{nd}}$ M1below		
		1 st M1	for a correct use of independence (ft their probabilities), values or le	tters.	
		1	Implied by 2 nd M1		
		2 nd M1	using $n \perp a = 0.52$ to goin a linear equation in one variable		
		2 nd M1	using $p + q = 0.52$ to gain a linear equation in one variable for a correct fraction for $q$		
		2 nd M1 1 st A1 2 nd A1	for a correct fraction for $q$ for a correct fraction for $p$	c c	
		1 st A1	for a correct fraction for q	3 0.07 C	

Question Number	Scheme	Marks
<b>3</b> (a)	Width = $2.5$ (cm)	B1
	1.5 cm ² for freq of 5 so $6 \times 1.5 = 9$ cm ² for freq of 30 or fd $= \frac{5}{3}$ w $\times h = 9$	M1
	So $h = 9 \div 2.5$ or $6 \div \frac{5}{3} = 3.6$ (cm)	A1
(b)	$Q_2 = [12] + \frac{16}{25} \times 3$ allow use of $(n + 1)$ giving $[12] + \frac{16.5}{25} \times 3$	(3) M1
	$\frac{25}{25} = 13.92 = \text{ awrt } \underline{13.9}$	A1
(c)(i)	$\sum fx = 5 \times 6.5 + 13 \times 9 + 16 \times 11 + 25 \times 13.5 + 30 \times 17.5 + 11 \times 24 = 1452$	(2) M1
(ii)	$\overline{x} = 14.52 = \text{awrt } \underline{14.5}$	A1 (2) M1
(11)	$\sum fx^2 = 6.5^2 \times 5 + 9^2 \times 13 + 11^2 \times 16 + 13.5^2 \times 25 + 17.5^2 \times 30 + 24^2 \times 11 = 23280$	1011
	$\sigma_x = \sqrt{\frac{"23280"}{100} - ("14.52")^2}  \underline{\text{or}}  \sqrt{21.9696}$	M1
	$\sigma_x = 4.687 = $ awrt <b><u>4.69</u></b>	A1 (3)
( <b>d</b> )	$\frac{1}{2} \times 13 + 16 + 25 + 30 + \frac{1}{4} \times 11$	M1
	So proportion is 80.25 % or 0.8025 awrt <b>0.803</b>	A1 (2)
(e)	Profit = $2.2 \times "0.8025" + 0.8 \times \frac{0.75 \times 11}{100} - 1.2 \times "\left(1 - \left[0.8025 + \frac{0.75 \times 11}{100}\right]\right)"$	M1
	= 1.6935 awrt <u>1.7 (p)</u>	A1 (2)
	Notes	[14 marks]
(a)	B1 for width = 2.5 (cm) M1 for sight of 9 cm ² or $w \times h = 9$ or fd = $\frac{5}{3}$ (o.e.)	
	A1 for height = 3.6 (cm)	
(b)		
	M1 for $\frac{16}{25} \times 3$ or $\frac{9}{25} \times 3$ or $\frac{m-12}{15-m} = \frac{16}{9}$	
	For any correct equation leading to $Q_2$ or correct fraction as part of $Q_2$	
(c)(i)	A1 for awrt 13.9 (use of $(n + 1)$ giving $13.98 = awrt 14.0$ ) M1 for attempt at $\Sigma fx$ with at least 3 correct terms or $900 < \Sigma fx < 1800$	
	<b>for info</b> $\Sigma f x = 32.5 + 117 + 176 + 337.5 + 525 + 264$	
	A1 for awrt 14.5 (correct answer only 2/2)	
(ii)	1 st M1 for attempt at $\Sigma fx^2$ with at least 3 correct terms or 20 000 < $\Sigma fx^2$ < 26 ( for info $\Sigma fx^2$ = 211.25 + 1053 + 1936 + 4556.25 + 9187.5 + 6336	000
	$2^{\text{nd}}$ M1 for a correct expression including $\sqrt{(\text{ft their }\Sigma fx^2 \text{ if clear it is }\Sigma fx^2)}$ Do not allow	
	$\begin{array}{c} \Sigma fx^{2} & (\Sigma fx)^{2} \text{ for } \Sigma fx^{2} \\ A1 & \text{ for awrt 4.69 (allow } s = 4.7107 \text{ awrt 4.71 }) (correct answer only 3/$	3)
( <b>d</b> )	M1 for attempt at a correct expression (allow 1 error or omission) $eg100 - ($	
	A1 for awrt 80.3% or 0.803	/ .
(e)	M1 for a correct expression ft their 0.8025 o.e. eg $[2.2 \times (100 - 11.5 - 8.25) + 0.8 \times 8.25 - 1.2 \times 11.5] \div 100$	
	Condone $[2.2 \times "80" + 0.8 \times (8) - 1.2 \times (12)] \div 100$	
	A1 for awrt 1.7 Allow $\pm 0.017$ (this must have units)	

Question Number	Scheme	Marks
<b>4.</b> (a)	$P(W < 120) = P\left(Z < \frac{120 - 165}{35}\right)$	M1
	= P(Z < -1.2857) = 1 - 0.9015  or  1 - 0.9007285 $= 0.09927 = awrt  0.0985 - 0.0994$	M1 A1
(b)	e.g. $P(W > x) = \frac{1}{3}$ gives $\frac{x - 165}{35} = \pm 0.43$ (calculator 0.430727)	(3) M1B1
	Limits 149.9245 to 180.0754 awrt <u>150</u> to <u>180</u>	A1, A1 (4)
(c)	$P(W < 200   W > "180")  \underline{\text{or}}  \frac{P("180" < W < 200)}{P(W > "180")  \text{or}  \frac{1}{3}}$	M1
	$=\frac{0.8413(44739)-\frac{2}{3}}{\frac{1}{3}}$	A1 (num)
	= 0.52403 <u>(0.523~0.5264)</u>	A1 (3)
( <b>d</b> )	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}; \times 3!$	M1;M1
	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}; \times 3! = \frac{2}{9}$	A1
		(3) [ <b>13 marks</b> ]
	Notes	[ []
(a)	$1^{st}$ M1for standardising with 120 (allow 210), 165 and 35. Accept $\pm$ $2^{nd}$ M1for attempting $1 - p$ [where $0.85 ]A1for awrt 0.0985~0.0994 (Correct ans only 3/3)$	
(b)	M1 for standardising with x (o.e.) 165 and 35 and setting equal to a z value, (Accept $\frac{165 - x}{35} = \pm z$ where $0.4 <  z  < 0.5$ )	0.4 <  z  < 0.5
	B1 for use of $z = 0.43$ or better We must see 0.43 or better. 1 st A1 for lower limit of awrt 150 2 nd A1 for upper limit of awrt 180	
SC	11	
(c)	M1 for a correct probability statement (either form) ft their 180 or a correct ratio 1 st A1 for a correct numerator (awrt 0.175) 2 nd A1 for an answer in the range awrt 0.523~0.5264 (use of 180 gives 0.5263869)	
( <b>d</b> )	1 st M1 for $\left(\frac{1}{3}\right)^3$ (or equivalent)	
	$2^{nd}$ M1 for $p \times 3!$ (or equivalent) where $0$	
	A1 for $\frac{2}{9}$ or any exact equivalent	

Question Number	Scheme	Marks
<b>5.</b> (a)	{E(X) = } $-2a - b + 0 \times c + b + 4a$ or $2a$ { $2a = 0.5$ so } <u>$a = 0.25$</u>	M1 A1
(b)	$\{ E(X^{2}) = \} (-2)^{2} \times a + (-1)^{2} \times b + 0 + 1^{2} \times b + 4^{2} \times a \text{ or } 20a + 2b \text{ (o.e.)} \\ \{ Var(X) = \}^{"}20a + 2b^{"} - 0.5^{2} \\ 20a + 2b - 0.25 = 5.01 \text{ (o.e.) e.g. } "4.75" + 2b = 5.01 \\ \{ 2b = 0.26 \text{ so} \} \underline{b} = 0.13 \\ \{ Use \text{ of sum of probs} = 1 \text{ to calculate a } 2^{nd} \text{ value} \} \underline{c} = 0.24 \\ \end{bmatrix}$	(2) M1 M1 A1 A1 A1ft
(c)(i) (ii)	${E(Y) = 5 - 8 \times 0.5} = 1$ ${Var(Y) =} (-8)^2 \times 5.01$	(5) B1 M1
( <b>d</b> )	$= 320.64 \text{ awrt } \underline{321}$ $4X^{2} > 5 - 8X$ $(2X - 1)(2X + 5) > 0 \implies X > 0.5$ So need X = 1 or 4 <u>or</u> probability of a + b $= \underline{0.38}$	A1 (3) M1 M1A1 M1 A1
		(5) [15 marks]
(a)	NotesM1for any correct expression for $E(X)$ in terms of $a$ (or $a, b, c$ )A1for $a = 0.25$	
(b)	1st M1for attempt at an expression for $E(X^2)$ with at least 3 correct non-zero terms2nd M1for a correct expression for $Var(X)$ eg"18a - c + 1" - 0.5² Allow with their value of a substituted1st A1for a correct equation for b (or possibly c) eg"18a - c + 1" - 0.5² = 5.01 Allow with their value of a substituted2nd A1for either b = 0.13 or c = 0.243rd A1ftfor using c = 1 - 2×"0.25" - 2×"0.13" or b = (1 - 2×"0.25" - "0.24") ÷ 2 to gai the correct ft answer for their 2 nd value	
(c)	B1 for $\{E(Y) =\} 1$ M1 for correct use of $Var(aX + b) = a^2 Var(X)$ A1 for awrt 321	
( <b>d</b> )	$1^{st}$ M1for correct quadratic inequality (may be inside prob statement) or $2^{nd}$ M1for an attempt to solve or identifying correct X values $1^{st}$ A1for $X > 0.5$ [ may also have $X < -2.5$ ] $3^{rd}$ M1for realising need $X = 1$ and 4 only or answer of their $(a + b)$ $2^{nd}$ A1for 0.38 (or exact equivalent) only (correct ans only 5/5)	table of values

Question Number	Scheme	Marks
6. (a)	$\{\mathbf{S}_{yy} =\} 42.63 - \frac{23.7^2}{16} = [7.524375]$	B1
		(1)
(b)	Use of $\overline{y} = 3.684 - 0.3242\overline{x}$ ; so $\sum x = 16 \times \left(\frac{3.684 - \frac{23.7}{16}}{0.3242}\right) = 108.71067$	M1; A1
	$\{\mathbf{S}_{xx} =\}756.81 - \frac{("108.71")^2}{16}; = 18.18435 \text{ awrt } \mathbf{\underline{18.2}}$	M1; A1 (4)
(c)	$b = \frac{S_{xy}}{S_{xx}} \Longrightarrow S_{xy} = "18.1843" \times (-0.3242) [= -5.8953]; r = \frac{"-5.89536"}{\sqrt{"18.184" \times 7.524375}}$	M1; M1
	$= -0.50399 = -0.49 \sim -0.51$	A1 (2)
(d)	Sub $x = 2$ in the regression line gives $y = 3.0356$	(3) B1 (1)
(e)	St.dev = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{\frac{"18.184"}{16}} = 1.066$	M1
	So limits are: $\frac{"108.71"}{16} \pm 3 \times "1.066" = 3.5965~9.9929 = awrt 3.6~10$	
( <b>f</b> )	The probability of $\underline{x = 2}$ being in the range is very small; so Behrouz's estimate is <u>unreliable</u>	(3) B1ft; dB1ft (2)
(g)	Should use regression of $x$ on $y$ to estimate unemployment or equivalent So Andi's suggestion is not suitable <u>or</u> not to be recommended	$ \begin{array}{c} (2)\\ B1\\ dB1 \end{array} $
		(2) [16 marks]
	Notes	
(a)		or $23.7^2$
(b)	<b>—</b>	
	1 st A1 for $\sum x$ = awrt 109 2 nd M1 for a correct expression for S _{xx} ft their $\sum x$	
	$2^{nd}$ M1 for a correct expression for $S_{xx}$ ft their $\Sigma x$ $2^{nd}$ A1 for awrt 18.2	
(c)		
	$2^{nd}$ M1 for a correct expression for <i>r</i> ft their S _{xy} and S _{xx}	
( <b>d</b> )	A1for an answer in the range $-0.49 \sim -0.51$ B1for sight of $y = 3.03$ or better. Allow 3.04	
(e)	1 st M1 for a correct attempt at st. dev. ft their $S_{xx}$ or $\sqrt{\frac{756.81}{16} - \left(\frac{"108.71"}{16}\right)}$	$\int^2$ ft their $\Sigma x$
	2 nd M1 for one correct calcft their values	
( <b>f</b> )	A1 for a range awrt 3.6~10 1st D1ft for a correct reason ft their range in part (e) eg $x = 2$ is <u>outside</u> the range	ge Allow
	extrapolation	50. 1 110 11
(g)	$2^{nd}$ dB1ft dep on $1^{st}$ B1 for stating a correct conclusion for their range $1^{st}$ B1 for a suitable reason based on reg line, eg regression line (y on x) can to estimate wages. Allow x instead of unemployment and y instead of	•
	$2^{nd}$ dB1 dep on $1^{st}$ B1 for suggesting not suitable (or equivalent)	