
Question Number	Scheme	Marks
1 (a)	$[0.15 + 0.13 + 0.12 =] \underline{0.4}$	B1
(b)	$0.15 + 0.20 + 0.23 + 0.12 \underline{\text{or}} 1 - (0.17 + 0.13) \underline{\text{or}} 0.35 + 0.35 \\ = \underline{0.7}$	(1) M1 A1
(c)	$[P(A B') =] \frac{P(A \cap B')}{P(B')}$ and $\frac{p}{"0.4"}$ or $\frac{0.15}{"0.4"}$	(2) M1
	$=\frac{3}{\underline{8}}$	A1
		(2) [5 marks]
	Notes	
(a)	B1 for 0.4 or exact equivalent	
(b)	M1 for a correct sum or expressionA1 for 0.7 or an exact equivalent. Correct answer with no incorrect working 2	/2
(c)	M1 for $\frac{P(A \cap B')}{P(B')}$ and $\frac{p}{"0.4"}$ where $0 just \frac{0.15}{"0.4"}$	
	Condone one missing "P" e.g. $\frac{P(A \cap B')}{(B')}$ but NOT $P\left(\frac{A \cap B'}{B'}\right)$ or $\frac{A \cap B'}{B'}$	but of course
	they may score this M mark from $\frac{0.15}{"0.4"}$	
	A1 for $\frac{3}{8}$ or exact equivalent e.g. 0.375 but $\frac{0.15}{0.4}$ is A0 Correct answer with no incorrect working 2/2	
	\mathcal{E} \mathcal{B}	

Question Number	Scheme	Marks	
2. (a)	[Median =] <u>74</u>	B1	
(b)	$Q_1 = 68$ $Q_3 = 80$ [IQR = $80 - 68 =$] <u>12</u>	(1) M1 A1 (2)	
(c)	$Q_1 - 1.5 \times (IQR) = "68" - 1.5 \times "12" [= 50]$ or $Q_3 + 1.5 \times (IQR) = "80" + 1.5 \times "12" [= 98]$ Outliers are < 50 or > 98	M1 A1ft	
	So there is just one outlier at 43	A1	
(d)	* + + + + + + + + + +	(3) M1 A1ft A1 (3) [9 marks]	
	Notes		
(a)	B1 for 74		
(b)	M1 for an attempt at both and at least one correct. May be in a calculation e.g. $80 - A$ (where $60 < A < 80$) or $B - 68$ (where $68 < B < 90$) A1 for 12		
(c)	M1 for correct attempt for at least one of the limits. Can ft their quartiles a	and IQR	
	1 st A1ft for correct attempts for both limits and with at least one correct limit or correct ft using their quartiles and IQR		
	Sight of the two limits 50 and 98 will score M1A1 2 nd A1 for identifying only one outlier at 43 (e.g. may say "43 < 50") Must be Just stating the outlier is 43 (or seeing it on box plot) without sight of limit		
(d)	M1 for drawing a box with only two whiskers one at each end		
	1 st A1ft for Q_1, Q_2 and Q_3 as a correctly drawn box (<u>or</u> ft their values for $Q_1 <$	$(Q_2 < Q_3)$	
	2^{nd} A1 for upper whisker ending at 97 and lower whisker ending at 54 or 50 and only one outlier, shown at 43 Allow \pm 0.5 of a square for accuracy		
	NB A fully correct box plot can score full marks in (d) even if other parts are missing or incorrect		

Question Number	Scheme	Marks
3. (a)	$[W = \text{weight of a package delivered to factory } W \sim N(18, 5.4^2)]$	
	$P(W < 18) = P\left(Z < \frac{10-18}{5.4}\right) \underline{or} P(Z < -1.481)$	M1
	$= 1 - 0.9306 (calc: 0.069239) \\= 0.0694 [0.0692, 0.0694]$	M1 A1 (3)
(b)	$[P(W>j) = 0.15 \text{ implies}] \frac{j-18}{5.4} = 1.0364$ $j = 23.596 \text{ awrt } \underline{23.6}$	M1B1 A1
(c)	$[P(W > 18 W < "23.59") =] \frac{P(18 < W < "23.6")}{P(W < "23.6")}$	(3) M1
	$= \frac{0.5 - 0.15}{0.85} \underline{\text{or}} \qquad \frac{0.85 - 0.5}{0.85}; = \frac{0.35}{0.85}$	M1;A1
	$=\frac{35}{85}=\frac{7}{\underline{17}} \text{ or allow awrt } \underline{0.412}$	A1 (1)
(d)	$0.85^2 \times 0.15^2 \times 6$ = 0.0975375 awrt <u>0.0975</u>	(4) M1dM1 A1 (3)
		[13 marks]
	Notes	
(a)	1^{st} M1 for standardising 10 with 18 and 5.4 (allow \pm) 2^{nd} M1 for $1 - p$ (where $0.91)A1for answer in the range0.0692 \leq ans \leq 0.0694 (calc. 0.069239) And p < 0.95$	s only 3/3
(b)	M1 for standardising their letter <i>j</i> with 18 and 5.4 and setting equal to <i>z</i> value $1 < z < 2$ Condone use of 10 instead of 18 for the M1 mark B1 for use of $z = \pm 1.0364$ or better (calc 1.03643338)	
Ans only	A1 for awrt 23.6 (calc 23.596740) [awrt 23.60 scores 3/3 23.6 scores M1B0A1 unless 1.0364 or better is seen]	
(c)	1 st M1 for a correct ratio of probability expressions ft their answer to (b) i.e. their <i>j</i> either the letter or their value provided > 18 May be implied by 2^{nd} M1	
	2 nd M1 for a ratio of probs of the form $\frac{q}{0.85}$ where $0.15 < q < 0.5$	
	Allow recalculation of 0.85 provided awrt 0.85 1 st A1 for a correct ratio i.e. using $q = 0.35$	
	2^{nd} A1 for $\frac{7}{17}$ or exact equivalent or allow awrt 0.412 (0.4117647)	
(d)	1^{st} M1for $p^2 \times (1-p)^2 \times k$ for any positive integer k (allow $k = 1$) and any probability p 2^{nd} dM1dep on 1^{st} M1 for $k = 6$ or $3!$ or 3×2 or $4C2$ A1for awrt 0.0975NB allow exact fraction $\frac{7803}{80000}$ Ans only 3/3	

Question Number	Scheme	Marks
4 (a)	(Discrete) uniform (distribution)	B1 (1)
(b)(i)	[By symmetry] $E(X) = 13$	(1) B1 (1)
(ii)	$\frac{10^2 + 12^2 + 14^2 + 16^2}{4} - 13^2 \underline{\text{or}} \frac{696}{4} - 169 \underline{\text{or}} 174 - 169$	M1
	4 - 4 - 5	A1
	<u>-</u>	(2)
(c)(i)	$E(Y) = \frac{1}{30} (1 \times 4 + 2 \times 9 + 3 \times 6 + 4 \times 5 + 5 \times 6); = \frac{90}{30} = \underline{3}$	M1; A1 (2)
(ii)	$E(Y^2) = \frac{1}{30} \left(1^2 \times 4 + 2^2 \times 9 + 3^2 \times 6 + 4^2 \times 5 + 5^2 \times 6 \right) = \left[\frac{324}{30} \text{ or } 10.8 \right]$	M1
	Var(Y) = "10.8" - "[3]" ² ; = <u>1.8</u>	M1; A1
(d)	$E(W) = E(Y) \implies aE(X) + b [= E(W) \text{ or } E(Y) \text{ or } "3"]; \text{ i.e. } "13"a + b = "3"$ $Var(W) = Var(Y) \implies a^2 \times "5" = "1.8"; \text{ so } a = \frac{3}{5} \underline{\text{or } 0.6}$	(3) M1; A1ft M1; A1
	<i>b</i> = <u>-4.8</u>	A1 (5)
(e)	Values of <i>w</i> are: $10 \times "0.6" - "4.8" = 1.2$ or 2.4 or 3.6 or 4.8 i.e. all non integers [So no cases are possible when $W = Y$ so $P(W = Y)$] = $\underline{0}$	(5) M1 A1
		(2) [16 marks]
	Notes	
(a)	B1 for "uniform" but if they say "continuous uniform" B0	
	For all parts, correct answer with no incorrect working seen scores full marks	
(b)(i)		
(ii)	M1 for a fully correct expression, can ft their 13 May use $E(X - \mu)^2 = \frac{3^2 \times 2 + 1^2 \times 2}{4}$	
	A1 for 5	
(c)(i)	M1 for an attempt at $E(Y)$ with at least 3 correct products seen	
(ii)	A1 for 3	
()	2^{nd} M1 for correct expression for Var(Y) (ft their 10.8 and 3) [NB Var(Y) = = 10.8 M1M0]	
$E(X-\mu)^2$	A1 for 1.8 (or exact equivalent) May see $0 \times \frac{6}{30} + 1 \times \left(\frac{9}{30} + \frac{5}{30}\right) + 2^2 \times \left(\frac{4}{30} + \frac{6}{30}\right)$ if in doubt send to review.	
(a)	1 st M1 for correct use of $E(aX + b)$ formula i.e. $aE(X) + b$ or "13" $a + b$ 1 st A1ft for a correct equation in a and b ft their $E(X)$ and their $E(Y)$	
	2^{nd} M1 for correct use of Var(Y) = Var($aX + b$) formula with their Var(X) and the	neir Var(Y)
	2 nd A1 for $a = 0.6$ or exact equivalent 3 rd A1 for $b = -4.8$ or exact equivalent	
		a m d
(e)	 M1 for a clear attempt to find all possible values of w (ft their values of a and b and w values needn't be correct) or state that no integer values for w (if this is true) Can ft their values of a and b even if the values for w are integers A1 for an answer of 0 provided it's true for their a and b (which may be incorrect) 	

Question Number	Scheme	Ma	rks
5 (a)	Positive (correlation) <u>or</u> e.g. "salary (y) increases as performance (x) increases" [NB "Positive skew" is B0]	B1	(1)
(b)(i)	$19428 - \frac{465 \times 562}{15}$ or $19428 - \frac{261330}{15} = 2006$ (*)	Blcso	(1)
(ii)	$19428 - \frac{465 \times 562}{15} \underline{\text{or}} 19428 - \frac{261330}{15} = 2006 (*)$ $\begin{bmatrix} S_{yy} = \end{bmatrix} 23140 - \frac{562^2}{15} \end{bmatrix}$	M1	
	= 2083.7333 awrt <u>2080</u>	A1	(2)
(c)	$[r=]\frac{2006}{\sqrt{2492 \times "2083.73"}}$; = 0.8803104 awrt <u>0.880</u>	M1;A	
(d)	Is consistent and the points on the scatter diagram lie close to a straight line <u>or</u> r is close to 1 <u>or</u> strong/high (positive) correlation (o.e.)	B1	(2)
	2006 = 0.80[407] = a = 37.46 "b"×31 [= 12.512]	M1;A	(1) 1·M1
(e)	$b = \frac{2006}{2492}$; = 0.80[497]; $a = 37.46 b'' \times 31$ [= 12.512]		-
(6)	y = 12.5 + 0.805x	A1	(4)
(f)	An increase of <u>1 (performance) point</u> gives an extra <u>£800</u> (1 sf) in salary (o.e.)	B1	(1)
(g)	Line must cross $x = 9$ and $x = 50$ to score either of these marks Line for 9~50 Intercept (extend line if necessary) at "12.5" (accept 11.5~13.5) Line for 9~50 At $x = 50$ $y = 52.8$ (accept 52~54)	B1ft B1	(2)
(h)	For the point (25, 48) circled. (If more than one of the given points circled B0)	B1	(1)
(i)	"12.5"+30×"0.805" [= 36~37] <u>or</u> allow 2sf from their diagram Salary of awrt (£) <u>36 700</u> (or 36.7 thousands)	M1 A1	(2)
	Surry of awre (2) 50.7 mousurds)	[17 m	
(b)(i)	Notes		iona)
(b)(i)			
(ii)	Correct answers to parts (b)(ii), (c), (e) & (i) with no incorrect working score full marks M1 for a correct expression A1 for awrt 2080 (expect to see 2084 but allow $\frac{31256}{15}$)		ains
(c)	M1 for a correct expression but ft their $S_{yy} \neq 23140$ or answer only of 0.88		
	A1 for awrt 0.880 (accept 0.88 from a correct expression with $S_{yy} = [2083 \sim 2084]$)		
(d)	B1 [no ft] for "yes" (o.e.) and a suitable reason based on scatter diagram or value of r		r
(e)	1 st M1 for a correct expression for b 1 st A1 for $b = 0.80$ or better (allow $\frac{1003}{1246}$ but not $\frac{2006}{2492}$)		$\frac{2006}{2492}$)
	2^{nd} M1 for a correct expression for <i>a</i> (allow $\frac{562}{15}$ for 37.46 and $\frac{465}{15}$ for 31)		
	2^{nd} A1 for correct equation in y and x with $b = awrt 0.805$ and $a = awrt 12.5$ (no f	raction	s)
(f)	B1 for a comment mentioning their value in £ of $b \times 1000$ (awrt 1 sf) per performance point Condone use of \$ rather than £		oint
(g)	1 st B1ft for correct intercept for their line (\pm 1) 2 nd B1 for $y = 52 \sim 54$ when $x = 5$	0	
(i)	M1 for using $x = 30$ in their equation ft their <i>a</i> and <i>b</i> to any accuracy A1 for awrt 36 700 (Answer only of awrt 37 000 can score M1A0)		

Question Number		Scheme	Marks
6. ((a)	Centre of the disc must land at least 1 cm from each side of the rectangle	M1
		i.e. inside a rectangle 3 cm long and 1 cm wide	dM1
		Probability disc lies inside rectangle is $\frac{3 \times 1}{5 \times 3} = \frac{1}{5}$ or $1 - \frac{2(1 \times 5 + 1 \times 1)}{5 \times 3}$ (oe)	Alcso
		(*)	(3)
((b)	$[\sigma_x =]\sqrt{\frac{295}{15} - \left(\frac{61}{15}\right)^2}$ or $\sqrt{3.1288}$	M1
		= 1.768866 awrt <u>1.77</u>	A1 (2)
((c)	$\overline{y} = 3.5 \implies \sum y = 42$, so new $\sum z = 42 + 61[=103]$	(2) M1, A1
		$\sigma_y = 2 \implies 2^2 = \frac{\sum y^2}{12} - 3.5^2 \text{ or } 2 = \sqrt{\frac{\sum y^2}{12} - 3.5^2}$	M1
		$\sum y^2 = (2^2 + 3.5^2) \times 12 \ [= 195] \text{ so new } \sum z^2 = (2^2 + 3.5^2) \times 12 + 295 \ [\text{or } 490]$	A1
		New mean = $\frac{"103"}{(15+12)} = [3.8148]$	dM1
		New standard deviation = $\sqrt{\frac{"490"}{(12+15)}} - "3.81"^2$ [= 1.89613]	dM1
		New mean =awrt 3.81 new st. dev = awrt 1.90	A1 (7)
((d)	Centre of disc must be within 1 cm of a vertex (so 4 quarter circles)	M1 (7)
		So probability of disc covering a vertex is $\frac{\pi}{15}$	A1
		So an estimate for π is $15 \times 0.2216 = 3.324$	A1 (3)
			[15 marks]
		Notes	~
MR	(a)	1 st M1 accept a suitable diagram showing "winning area" <u>or</u> equivalent in words 2 nd dM1 dep on M1 for dimensions of rectangle within which centre must lie (at least 3 or 1 se A1 cso for complete explanation with evidence seen for both M1 marks See next page for case of MR with $n = 15 \times 20 = 300$	
(b)	M1 for a correct expression including $$ allow $\sqrt{3.129}$ or better	
· · · · · · · · · · · · · · · · · · ·		A1 for awrt 1.77 [exact surd is A0] (allow $s = awrt 1.83$ [calc: 1.8309508]) A	Ans only 2/2
((c)	e) 1^{st} M1 for using mean of 3.5 to get sum of 12 students e.g. 12×3.5 1^{st} A1 for a correct sum of $42 + 61$ or 103 (allow any letter). 2^{nd} M1 for a correct equation for $\sum y^2$ (sum of squares for the 12 students). Any letter	
		2 nd A1 for correct expression for $\sum z^2$ e.g. = 195 + 295 [= 490]	
		3 rd dM1 dep on 1 st M1 for a correct method for finding new mean or awrt 3.81	
		4 th dM1 dep on 1 st and 2 nd M1s for a correct method for new st. dev. 3 rd A1 for both mean = awrt 3.81 (or 3.815) <u>and</u> st. dev = awrt 1.90	
((d)	M1 for explanation or diagram showing possible region for centre is a full circle 1^{st}A1 for the correct probability. Allow M1A1 for $\frac{\pi}{15}$ (o.e.) but must be in part (d)	
		2 nd A1 dep on M1 for estimate of 3.324 (accept 3.32 if M1A1 clearly scored)	

Qu 6	Scheme for MR	Marks
(a)	As for main scheme	M1dM1
MR	Only use this scheme for marking the MR	Alcso (3)
n = 300	Only use this scheme for marking the first	(5)
	$295 (61)^2$	
(b)	$[\sigma_x =] \sqrt{\frac{295}{300} - \left(\frac{61}{300}\right)^2}$ or $\sqrt{0.941988}$	M1
	= 0.9705611 awrt 0.971	108
m = 240	= 0.9703611 awrt <u>0.971</u>	A0ft $(2 - 1 = 1)$
	$\overline{y} = 3.5 \implies \sum y = 240 \times 3.5 = 840$, so new $\sum z = 840 + 61 [= 901]$	(2 – 1 – 1) M1, A0ft
(0)		1011, 71010
	$\sigma_y = 2 \implies 2^2 = \frac{\sum y^2}{240} - 3.5^2 \text{ or } 2 = \sqrt{\frac{\sum y^2}{240} - 3.5^2}$	M1
	$\sum y^2 = (2^2 + 3.5^2) \times 240 [= 3900] \text{ so } \sum z^2 = \sum y^2 = (2^2 + 3.5^2) \times 240 + 295$ [or 4195]	A1ft
	New mean = $\frac{"901"}{(300+240)} = [1.66851]$	dM1
	New standard deviation = $\sqrt{\frac{"4195"}{(240+300)}} - "1.668"^2 [= 2.2326]$	dM1
	New mean =awrt 1.67 new st. dev = awrt 2.23	A1ft $(7 - 1 = 6)$
(d)	Centre of disc must be within 1 cm of a vertex (so 4 quarter circles)	M1
	So probability of disc covering a vertex is $\frac{\pi}{15}$	A1
	So an estimate for π is $15 \times 0.2216 = 3.324$	A1
		(3)
		[13 marks]
(a)	As in main scheme	
(a)	As in main scheme	
(b)		
	A0 for awrt 0.971 (This is A0 for misread as the first two accuracy ft marks are	e withineid)
(c)	1^{st} M1 for using mean of 3.5 to get sum of 12 students e.g. 240×3.5	
	1^{st} A0 for a correct sum of $840 + 61 \text{ or } 901$ (allow any letter)	071: (1))
	(This is the 2 nd A0 for misread unless, of course, they didn't achieve awrt 0.) $2^{nd} M_1$ for a correct equation for $\sum w^2$ (sum of equators for the 12 students = 7)	
	2 nd M1 for a correct equation for $\sum y^2$ (sum of squares for the 12 students = 2	240 rolls)
	2 nd A1ft for correct expression for $\sum z^2$ e.g. = 3900 + 295 [= 4195]	
	3 rd dM1 dep on 1 st M1 for a correct method for finding new mean or awrt 1.67	1
	$4^{\text{th}} \text{ dM1}$ dep on 1^{st} and $2^{\text{nd}} \text{ M1s}$ for a correct method for new st. dev.	
	3^{rd} A1ft for both mean = 1.67 <u>and</u> st. dev = awrt 2.23	
(d)	As in main scheme	
(")	M1 for explanation or diagram showing possible region for centre is a full circle	
	1 st A1 for the correct probability. Allow M1A1 for $\frac{\pi}{15}$ (o.e.) but must be in part	
	2 nd A1 dep on M1 for estimate of 3.324 (accept 3.32 if M1A1 clearly scored)	
	Minimum acceptable for 3/3 is $\pi = 15 \times 0.2216 = 3.324$	