Question Number	Scheme					Marks		
	x	- 1	2	3	4	7		
1.	P(X=x)	$\frac{9}{k}$	$\frac{6}{k}$	$\frac{5}{k}$	$\frac{4}{k}$	$\frac{1}{k}$		M1
	$\sum P(X = x) = 1 \implies \frac{25}{k} = 1$					M1		
	<i>k</i> = 25					A1		
	$E(X) = \frac{1}{25} \left[-1 \times 9 + 2 \times 6 + 3 \times 5 + 4 \times 4 + 7 \times 1 \right]$					M1		
	$=\frac{41}{25}$					A1		
								[5]
	Notes							
	1 st M1 for at least 3 correct probabilities in terms of k (may be seen used in expression for $E(X)$) 2 nd M1 for attempting to use sum of 5 probs = 1 (ft their probabilities) 1 st A1 for $k = 25$ (stated or used correctly)							
	3^{rd} M1 for attempt at a correct expression at least 3 products (ft their k – value or letter)							
	2^{nd} A1 for $\frac{41}{25}$ or exact equivalent e.g. 1.64							
	Correct answer with no incorrect method marks scores 5/5							

Question Number	Scheme			
2. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1		
(b)	$P(W) = 0.4p + 0.35q + 0.25 \times 0.4 \qquad [= 0.4p + 0.35q + 0.1]$			
(c)	Correct expression: $P(W \cap V) = "0.1" = "0.25" \times P(W)$ or $P(W) = P(W V) = 0.4$ $0.1 = 0.25(0.4p + 0.35q + 0.25 \times 0.4)$ or $0.4p + 0.35q + 0.25 \times 0.4 = 0.4$			
(d)	$\frac{7}{30} = \frac{0.35(1-q)}{"P(J)"}$	M1		
	Since V and W are independent so are V and W' = J so $P(J) = 0.6$ or sub $P(J) = 1$ - their (b) to get an equation in p and q [May see $8p - 23q + 12 = 0$] [So $1 - q = \frac{2}{3}P(J)$ therefore] $\underline{q = 0.6}$ $8p + 7 \times "0.6" = 6$ So $\underline{p = 0.225}$ or $\frac{9}{40}$	dM1 A1 ddM1 A1		
(e)	$\{P(V \mid W) = P(V) = 0.25 \text{ (since independent) and } P(M \mid W) = 0.225 (=p)\}$ $P(F \mid W) = \frac{0.35 \times "0.6"}{"0.4"} \underline{\text{or}} \frac{0.35q}{(b)}; = \frac{21}{40} \text{ or } 0.525$ [Since this prob > 0.5 therefore it must be the largest] so conclusion <u>is</u> correct Allow B1ft for comparing 3 calculated probs of the form P(M \cap W) needn't be correct ft	(5) M1 ;A1 B1ft (3)		
	Notes	[13]		
(a)	1 st B1 0.25 for P(V) 2 nd B1 for correct probabilities on 2 nd branches $(1 - p)$, $(1 - q)$ [allow their values] a	and 0.6		
(b)	B1ft for a correct expression using their values from tree diagram			
(c)	M1 for sight or use of a correct expression in V and W or correct equation in p and q (ft their part (b)) A1 for a fully correct equation (needn't be simplified) [may see $0.4p + 0.35q = 0.3$ or $8p + 7q = 6$]			
(d)	1 st M1 for using given conditional probability to form an equation in q and P(J) using $\frac{7}{30}$ 2 nd dM1 (dep on 1 st M1) for a getting P(J) = 0.6 <u>or</u> sub 1 – their (b) and get 2 nd equation in p and q 1 st A1 for q = 0.6 [NB must be q = 0.6 not just P(J) = 0.6] May see after 3 rd M1 for solving with p 3 rd ddM1(dep on both Ms) for seeing substitution of their 1 st value to find the 2 nd value (p or q) Allow ft of their p or q in one of their equations provided p and q both lie in (0, 1) 2 nd A1 for p = 0.225 or exact equivalent After the 2 nd M1, sight of p = 0.225 and q = 0.6 earns the final 3 marks			
(e)	M1 for a method for finding $P(F W)$ A1 for a correct value $\frac{21}{40}$ or exact equivalent B1ft for a correct conclusion based on enough probs found ft their probabilities			

Question Number	Scheme				
3. (a)	[D = distance achieved] $P(D > 4.3) = P\left(Z > \frac{4.3 - 3.8}{0.9}\right)$ or $P(Z > 0.555)$	M1			
	= $1 - 0.7123$ (tables) = 0.2877 (tables) or 0.289257 (calc) awrt <u>0.288</u> or awrt <u>0.289</u>	M1 A1			
(b)	$\frac{d-3.8}{0.9} = -0.8416 (\text{calc} - 0.84162123)$	(3) M1 ; B1			
	d = 3.0425 awrt <u>3.04</u>	A1 (3)			
(c)	$P(D > g D > 4.3) = \frac{P(D > g)}{P(D > 4.3) \text{ or } (a)} \left[= \frac{1}{3} \right]$ (o.e.)	M1			
	$\therefore P(D > g) = \frac{1}{3}(a) = 0.096419$	A1ft (o.e)			
	$\frac{g-3.8}{0.9} = 1.302228$	dM1			
	so $g = 4.97200$ awrt <u>4.97</u> or awrt <u>4.98</u>	A1 (4)			
(d)	P(no gold medals) = $\left(\frac{2}{3}\right)^3$	M1			
	P(at least one gold) = $1 - \left(\frac{2}{3}\right)^3$	M1			
	$=\frac{1}{27}$	A1 (3)			
		[13]			
(a)	$\frac{1^{st} M1}{1^{st} M1} $ for standardising 4.3 with 3.8 and 0.9 (allow +)				
(4)	$\begin{array}{l} 2^{nd} \text{ M1 for } 1 - p \text{ (where } 0.7$				
(b)	M1 for standardising with d, 3.8 and 0.9 and setting equal to a z value $0.8 < z < 0.9$				
	B1 for $z = \pm 0.8416$ or better used A1 for awrt 3.04 (condone $d \ge -$)				
Ans only	For awrt 3.0425 or 3.0426 score $3/3$ For awrt 3.04 score M1B0A1				
(c)	1 st M1 for either expression for the conditional prob. [<u>or</u> sight of $\frac{1}{3}(a)$] (ft their answer 1 st A1ft for P($D > g$) = 0.096 or better (0.289 gives 0.09633 calc 0.096419) The P($D > g$) may be clearly shown on a diagram. 1 st M1A1 can be awarded for P($D > g$) = $\frac{1}{3}(a)$ <u>or</u> for P($D < g$) = $1 - \frac{1}{3}(a)$ [ft their 2 nd dM1 (dep on 1 st M1) for standardising with g, 3.8 and 0.9 and put equal to a z value	r to (a) to 2 sf) r (a) to 2 sf] where $ z > 1$			
SC	2 nd A1 for awrt 4.97 or 4.98 (Correct answer with no incorrect working seen 4/4) (conc (Medals v Certificates) 1 st B1 for $[P(D > g) = 1 \pm x 0.8 = 4 \text{ or } 0.267$ (score as 1 st M0	lone $g \ge \dots$) 1 st A1)			
, sc	2^{nd} B1 for $g = awrt 4.36$ (4.358 tables, 4.3606calc) (score as 2	nd M0 2 nd A1)			
(d)	1 st M1 for a correct probability of no gold medals or 2 of: $3\left(\frac{2}{3}\right)^2 \times \frac{1}{3}$ or $3\left(\frac{1}{3}\right)^2 \times \frac{2}{3}$ 2 nd M1 for $1 - p^3$ or $3(p)^2(1-p) + 3p(1-p)^2 + (1-p)^3$ where 0	$\underline{\text{or}} \left(\frac{1}{3}\right)^3$			
	A1 for $\frac{19}{27}$ (or exact equivalent) only e.g. 0.703				

Question Number	Scheme	Marks
4. (a)	Upper quartile = 34 Lower limit = $24 - 15 = 9$ or upper limit is " 34 " + $15 = 49$ So outliers are: 8, 52.5 and 56	B1 M1 A1ft, A1ft (4)
(b)	* * * * * * * 0 10 20 30 40 50 60	B1 B1 B1
(c)	$Q_2 - Q_1 (= 6) > ("4" =) Q_3 - Q_2 \text{or e.g. in words e.g. "} Q_3 \text{ closer to } Q_2 \text{ than } Q_1 \text{ is"}$ So <u>negative</u> (skew)	(3) M1 A1ft (2)
(d)	IQR now "34" $-26 = 8$ so new outlier limits are $26 - 1.5 \times$ "8" $= \underline{14}$ and "34" $+ 1.5 \times$ "8" $= \underline{46}$	(2) M1
		A1ft A1
		(3)
(e)	$[Q_1$ has increased so both above 24 Median same so either side of or on median] So one between 26 and 30 inc $[Q_3$ unchanged so must be either side of Q_3] so one between "34" and 45 inc	B1 B1
		(2) [14]
	Notes	
(a)	B1 for $Q_3 = 34$ either stated or used/implied (score if seen on box plot) M1 for one correct coloulation (ft their 24 for unner limit) [May be implied by correct	at authors]
	2^{nd} A 1ft for the lower outlier at 8 (ft their limit provided limit ≤ 12)	their outliers
	3^{rd} A1ft for upper outliers at 52.5 and 56 (ft their limit provided it is > 45) are seen	on box plot
	NB These accuracy marks are for the outliers not the limits	
(b)	1 st B1 for a box with $Q_1 = 24$, $Q_2 = 30$ $Q_3 =$ their 34 and two whiskers one on each side 2 nd B1 for one lower whisker ending at 10 (or their 9) and outlier at 8 only	
SC	3 rd B1 for one upper whisker ending at 45 (or their 49 to match "9") and outliers at 52.5 Extra whiskers. If one set of whiskers gives a correct box plot award B1B0B0 Usual accuracy for plots – to within 0.5 of a square.	and 56 only
	M1 for correct comparison of $Q_2 - Q_1$ and $Q_2 - Q_2$ (ft their Q_3)	
(c)	(if no values seen <u>must</u> see comparison otherwise accept correctly assigned 6 and A1ft for correct deduction based on their Q_3 (+ve (skew) if their $Q_3 > 36$, <u>no skew</u> if the	4 without >) eir $Q_3=36$)
(d)	M1 for recognising new IQR and at least one correct new limit (ft their 34, implied by 1^{st} A1ft for a correct lower whisker ending at 15.5 (or their 14) and 2 correct outliers at 8 2^{nd} A1 for a <u>fully</u> correct box plot with upper whisker to 45 (or could go to 46 [to match	correct plot) 8 and 10 1 their 14])
SC	Extra whiskers. If one set of whiskers gives a correct box plot award M1A0A1	
(e)	1 st B1 for a range [26, 30] allow that () (o.e. eg between 26 and 30) 2 nd B1 for a range [34, 45) condone [] or () (ft their 34 and allow o.e. e.g. between	34 and 45)

Question Number	Scheme		
5. (a)	$y = 6.066 + 0.136 \times 80$	M1	
	= 16.946 (so annual rent is) <u>\$ 16 946</u>	A1	
		(2)	
(h)	$S = 3434 + \frac{183^2}{183}$ or $S = 84.818 + \frac{900^2}{183}$	M1	
(0)	$S_{yy} = 3434 - \frac{10}{10}$ or $S_{xx} = 64.818 - \frac{10}{10}$	1011	
	$S_{yy} = 85.1$	A1	
	$S_{xx} = 3818$	A1	
		(3)	
(c)	Need S_{xy} so use b so $S_{xy} = b \times S_{xx} = 0.136 \times 3818$ or 519.248	M1; A1	
	0.136×"3818"		
	$[r =] \frac{1}{\sqrt{3818'' \times 85.1''}}$	MI	
	= 0.9109448 awrt <u>0.911</u>	A1	
		(4)	
(d)	Since (new $x = 90$ and [original or] new $\overline{x} = 90$) the term $(x - \overline{x})$ will be 0	M1	
	Therefore (the 11 th shop makes no change) S_{xy} stays the same	A1	
		(2)	
(e)	S_{xx} will be the same so <i>b</i> will be the same	M1	
	New $\overline{v} = \frac{183 + 15}{100} = 18$ (or <i>a</i> is reduced by 0.3)	M1	
	11 10 (01 a is related by 0.5)	1711	
	Equation is $y = 5.766 + 0.136x$	A1 (2)	
(f)	$x = 300$ is outside the range $300 \gg 90$ [$200 \gg 90 \pm 3\sigma = 90 \pm 3 \times 18.63 \approx 1461$	(3) B1	
(1)	$x = 500$ is outside the range $500 \approx 70$ [$500 \approx 70$ + $50 = 70$ + 5×10.05 ≈ 140] So not suitable (since involves extrapolation) (o.e.)	(1)	
		[15]	
	Notes		
(a)	M1 for substituting $x = 80$ into the given equation	C 1	
	A1 for awrt \$ 16 900 (or better)(allow 16.9 thousand dollars). Must have some units	s. Condone $y =$	
(b)	M1 for a correct expression for either (can be implied by sight of either correct answe	er)	
(0)	1^{st} A1 for 85.1	(1)	
	2 nd A1 for 3818 or accept 3820		
(c)	1^{st} M1 for an attempt to use gradient of regression line to find S_{xy} 1^{st} A1 for ourt 510		
	2^{nd} M1 for a correct expression using their values (M0 if S _m = 900 × 183 = 164700)		
	2^{nd} A1 for awrt 0.911		
(a)	M1 for stating or showing [old or] new $x = 90$ (new $x = 90$ implied) or stating that $(x = 1)$	-x) term = 0	
	A1 for a fully correct argument mentioning new $x = x = 90$ and that extra $(x - x)$ for a fully correct argument mentioning new $x = x = 90$	erm = 0	
	Condone using $y = 18.3$ instead of 18		
(e)	1^{st} M1 for a correct statement about S_{xx} or b (may be implied by 0.136 used correctly)	
	2^{nd} M1 for a correct value for new \overline{y} (calculation may be seen in (d) scores here when	18 is used)	
	A1 for $y = 5.766$ (or awrt 5.77 or awrt 5.76) + 0.136x (correct equation scores 3/3)		
(f)	B1 for suitable comparison (must see 300 vs 90 or 3000 vs 900) that says or implies the outside the range and therefore not suitable. Not sufficient to just surface with the set of the se	hat 300 will be	
	outside me range and meretore <u>not</u> suitable. Not sufficient to just say "larger"		

Question Number	Scheme			
6 (a)	$[E(4) = 1 \times 0.4 + 4 \times 0.2 + 5 \times 0.25 + 7 \times 0.15]$	M1		
0. (a)	=3.5 (*)	Alcso		
		(2)		
(b)	$\begin{bmatrix} E(A^2) = \\ 1 \times 0.4 + 4^2 \times 0.2 + 5^2 \times 0.25 + 7^2 \times 0.15 \\ [= 17.2] \end{bmatrix}$	M1		
	$Var(A) = E(A^2) - [E(A)]^2 = 17.2 - 3.5^2$	M1		
	= <u>4.95</u>	A1		
	(Discrete) uniform (distribution)	(3)		
(()		(1)		
(d)	By symmetry $k = 6$	B1		
		(1)		
(e)	[Sam has $Z = \frac{5.5-4}{3} = -\frac{1}{6}$ and] Tim needs $\frac{5.5-4}{4} < -\frac{1}{6}$ so $A > 4.166$	M1		
	So prob = $0.25 + 0.15 = 0.4$	Al		
	·	(2)		
(f)	Need largest possible $\mu = 7$ and smallest possible $\sigma = 1$	B1, B1		
	$P(X > 3.5)$ is then $P\left(Z > \frac{3.5 - 7}{1}\right) = P(Z > -3.5)$	M1		
	= 0.9998 (tables) or 0.999767 (calc)	A 1		
	<u>0.3330</u> (abies) of 0.333707(eare)	(4)		
(g)	[Need $A = 7$ and $B = 1$ (or ft from (f)) so] $P(A = 7) \times P(B = 1) \text{ or } (0.15) \times 0.25$	M1		
	= 0.0375	Alcso (2)		
		[15]		
	Notes			
(a)	A lcso for 3.5 or exact equivalent with no incorrect working seen and M1 scored			
(b)	1 st M1 for an attempt at $E(A^2)$ – at least 3 correct products 2 nd M1 for use of $E(A^2)$ – $[E(A)]^2$ ft their value for $E(A^2)$			
	2 M1 for use of $E(A) = [E(A)]$ it then value for $E(A)$ M2 for $(-2.5)^2 \times 0.4 + (0.5)^2 \times 0.2 + (1.5)^2 \times 0.25 + (3.5)^2 \times 0.15$ (at least 3 correct pr	roducts)		
ALI	A_1 for 4.05 or an exact equivalent e.g. $\frac{99}{100}$	oddets)		
	At 101 4.55 of an exact equivalent e.g. $\frac{1}{20}$			
(c)	B1 for uniform (continuous uniform is B0)			
(d)	B1 for stating $k = 6$ with a suitable reason e.g. mention of symmetry or full calculation	on		
	3.5 - A = 1			
(e)	M1 for a suitable calculation for A e.g. $\frac{6}{4}$ or stating $A = 5$ or $\frac{-6}{4}$ awr	t 4.2 (o.e.)		
	A1 for 0.4 (must be based on some correct calculation seen)			
(f)	1^{st} B1 for $\mu = 7$ may be implied from a standardisation with 3.5 seen			
(1)	2^{nd} B1 for $\sigma = 1$ may be implied from a standardisation with 3.5 seen			
	M1 for attempting correct probability i.e. $P(Z \dots \text{ or } X \dots)$ ft standardisation using 3.5, t	heir $\mu \neq 4$ and		
	their $\sigma \neq 3$ but their μ and σ must be "possible" values or $P(Z > -3.5)$			
	A1 tor 0.9998 or better			
(g)	M1 for " 0.15 "× 0.25 ft their value of A from (f)			
	A1cso for 0.0375 or exact equivalent e.g. $\frac{3}{80}$ (Must clearly come from $A = 7$ and $B = 1$	in (f))		