QUESTION	SCHEME	MARKS
NUMBER	N.D. Calardan array and a 2 N.A. C. 1.2	
1(2)	N.B. Calculator warning: 'Not entirely'	M1
1(a)	Differentiate displacement to find an expression for velocity.	M1
	$v = 8t^3 - 42t^2 + 45t + 14$	A1
	Substitutes $t = 2$ to find $v = 0$	A 1 36
	Or solves $v = 0$ to give $t = -\frac{1}{4}, 2, 3.5$	A1*
	N.B. Only stating with no working t=2,v=0 or v=0,t=2 is A0	
		(3)
1(b)	Complete method to find total distance = $ x_2 - x_0 + x_3 - x_2 $	M1
	$\frac{95}{2}$ (m)	A1
		(2)
1(c)	Differentiates velocity	M1
	$24t^2 - 84t + 45$	
	Substitute $t = 1.5$ into differentiated expression	M1
	Correct magnitude of acceleration	A1
	$27 \text{ (m s}^{-2})$	
	, ,	(3)
		(8)
	Notes for question	
1(a)		
M1	Differentiate given expression with at least two powers of <i>t</i> decreasing by 1.	
A1	Correct differentiated expression.	
A1*	Obtain t=2 from correct and complete working. If solving	
	equation, and if any incorrect roots appear A0.	
1(b)		
M1	Complete method to find the total distance. Do not condone	
	sign errors. $(x_0=0, x_2=38, x_3=28.5)$	
A1	Correct distance, must be positive	
1(c)		
M1	Differentiate velocity to find an expression for acceleration	
3.54	with at least two powers of t decreasing by 1.	
M1	Substitute 1.5 into their differentiated velocity.	
A1	Correct answer, must be positive.	

QUESTION NUMBER	SCHEME	MARKS
2	2a B	
2(a)	SquareMass ratioDistance from AD Square $4a^2$ a Semicircle removed $\frac{\pi a^2}{2}$ a Semicircle attached $\frac{\pi a^2}{2}$ $\frac{4a}{3\pi} + 2a$ Lamina $4a^2$ \bar{x}	B1 (mass) B1 (distances)
	Moments equation about AD or a parallel axis About AD $\left(4a^2 \times a\right) - \left(\frac{\pi a^2}{2} \times a\right) + \frac{\pi a^2}{2} \left(\frac{4a}{3\pi} + 2a\right) = 4a^2$ About BC $4a^2(a) - \frac{\pi a^2}{2}(a) - \frac{\pi a^2}{2} \left(\frac{4a}{3\pi}\right) = 4a^2(2a - \overline{x})$ About line joining midpoints of AB and DC $4a^2(0) - \frac{\pi a^2}{2}(0) + \frac{\pi a^2}{2} \left(a + \frac{4a}{3\pi}\right) = 4a^2(\overline{x} - a)$	
	Obtain given answer from correct working. $\overline{x} = \frac{a}{24} (28 + 3\pi) *$	A1*
2(b)	Relevant moments equation $T \times 2a = W \frac{a}{24} (28 + 3\pi)$ Second relevant equation e.g. $5T = W + kW$	(5) M1 A1 M1 A1
	$k = \left(\frac{92 + 15\pi}{48}\right)$	(5) (10)
2(a)	Notes for question Vector form is acceptable for part a	

B 1	Correct mass ratios for all 4 sections.	
B1	Correct distances for square and two semicircle sections	
	measured from their moments line. (or shape to LHS of BC	
	and semicircle)	
M1	Moments taken about AD or a parallel axis. Dimensionally	
	correct equation. All terms required. 'a²'s may have been	
	cancelled. LHS correct and RHS uses their \bar{x} .	
A1	Correct unsimplified equation in terms of a , \bar{x} and π .	
A1*	Obtain given answer from correct working. At least one stage	
	of simplification must be seen. Must be factorised with	
	Allow(28+3 π) and (3 π +28)	
2(b)		
M1	Form a moments equation about AD or a parallel axis.	
	Dimensionally correct equation. All terms required.	
A1	Correct unsimplified equation. Allow in terms of \bar{x} . Accept	
	decimal form for \overline{x}	
M1	Second relevant equation (moments or vertical equilibrium).	
	Dimensionally correct equation. All terms required.	
A1	Correct unsimplified equation. Accept decimal form for \overline{x}	
	Other possible moments equations include:	
	About B:	
	$4T \times 2a - kW \times 2a - W(2a - \overline{x}) = 0$	
	About midpoint AB:	
	$4T \times a - kWa - W(\overline{x} - a) - Ta = 0$	
	About G:	
	$4T\overline{x} - kW\overline{x} = T\left(2a - \overline{x}\right)$	
	$41 \times 10^{-1} (20 - 1)$	
A1	Cao Accept equivalent forms in the form $p + q\pi$, but must be	
	exact	ļ

QUESTION	SCHEME	MARKS
NUMBER		
3	Accept column vectors throughout this question	
3(a)	Complete method to find greatest height (h)	M1
	e.g.	
	$0 = 14^2 + 2(-g)h$	
	h = 10	A1
20)	XY 1	(2)
3(b)	Vertical component	M1
	v = 14 - g(2.4)	N/1
	Use Pythagoras to find	M1
	Speed = $\sqrt{8^2 + (14 - 2.4g)^2}$	
	12.4 or 12 (ms ⁻¹)	A1
		(3)
3(c)	Relevant equation in t formed using vertical motion.	
	e.g.	M1 A1
	$3 = 14t + \frac{1}{2}(-g)t^2$	
	2	
	Use Horizontal motion to find the required distance	M1
	8 <i>t</i> 8 <i>x</i> 2.6	A 1
		A1
	21 or 21.0 (m)	A1 (5)
	AIT method forming traingtony aquation	(5)
	ALT method forming trajectory equation Relevant equation in <i>t</i> and <i>y</i> formed using vertical motion.	
		M1
	$y = 14t - \frac{1}{2}gt^2$	1411
	2	
	Form relevant horizontal equation in x and t	M1
	x = 8t	
	Eliminate t to form correct equation in x and y	A1
	_ = · · · · · · · · · · · · · · · · · ·	
	$y=14\times\frac{x}{8}-\frac{1}{2}g\left(\frac{x}{8}\right)^2$	
	Substitute $y=3$ into correct equation and solve for x	A1
	21 or 21.0 (m)	A1
	ATT A L ' E	(5)
	ALT method using Energy	3.61
	Vertically:	M1
	$\frac{1}{2}(m)(14^2-v^2)=3(m)g$	
	2 , , , , , , , , , , , , , , , ,	
	Form vertical suvat equation in their v and t	M1
	v=14-gt	1411
		A 1
	$\sqrt{\frac{686}{5}} = 14 - gt$	A1
	$\sqrt{\frac{1}{5}}$	

	8x2.6	A1
	21 or 21.0 (m)	A1
		(5)
		(10)
	Notes for question	
3(a)		
M1	Complete method to find greatest height. Condone sign errors.	
A1	cao	
3(b)		
M1	Complete method to find the vertical component at <i>t</i> =2.4 Condone sign errors.	
M 1	Use of Pythagoras with both components to find speed	
A1	Correct answer, 2/3sf	
3(c)		
M 1	Relevant equation formed using vertical motion. Condone sign errors.	
A1	Correct unsimplified equation(s). (Note $t = 2.62$ (3sf) but does not need to be seen for this mark)	
M 1	Use horizontal motion to find the required distance	
A1	Uses 'larger' <i>t</i> =2.6to calculate distance <i>AB</i>	
A1	Correct answer with 2 or 3sf. Accept 21, 21.0.	
	Alt method Trajectory Enter marks in correct M and A spaces	
M1	Relevant equation formed in t and y using vertical motion.	
M1	Form relevant horizontal equation in x and t	
A1	Eliminate t to form correct equation in x and y	
A1	Substitute $t=3$ into correct equation and solve for x	
A1	Correct answer with 2 or 3sf. Accept 21, 21.0.	
	Alt method Energy	
M1	Form (vertical) energy equation, m 's may have been cancelled and 8^2 may have been added to both velocity parts	
M1	Form vertical suvat equation in their v and t	
A1	Substitute correct value for $v(\sqrt{\frac{686}{5}}=11.71)$ and solve for t	
A1	Uses $t=2.62$ to calculate distance AB	
A1	Correct answer with 2 or 3sf. Accept 21, 21.0.	

QUESTION	SCHEME	MARKS
NUMBER		
4		N/1
4(a)	Equation of motion	M1
	D - 30 = 70(0.4)	A1
	Use of $P = D \times 5$	M1
	P = 290 (W)	A1
		(4)
4(b)	At least one correct KE term	M1
	$1 \times 70 \times 8^2$ $1 \times 70 \times 5^2$	
	$\frac{1}{2} \times 70 \times 8^2 \qquad \frac{1}{2} \times 70 \times 5^2$	
	Work done against resistance = 250×30	B1
	Work-energy equation	M1
	$70gH = \frac{1}{2} \times 70 \times 8^2 - \frac{1}{2} \times 70 \times 5^2 + 250 \times 30$	A1
	H = 13 or 12.9 (m)	A1
		(5)
4(c)	Total work done	M1
-(-)	$70g(200\sin 5^{\circ}) + (30 \times 200)$	A1
	18000 (J)	A1
	18000 (3)	(3)
		(12)
	Notes for question	(12)
4(a)	rotes for question	
M1	Equation of motion. Dimensionally correct with all required	
1411	terms and no extras.	
A1	Correct unsimplified equation.	
M1	Use of $P = D \times 5$	
A1	Correct answer, 290 (W)	
4(b)	Contest unit (1)	
M1	At least one KE term correctly formed.	
B1	Expression seen for work done against resistance.	
M1	Work-energy equation. Dimensionally correct with all required	
	terms and no extras or double counting. Mass must be replaced	
	with 70. Condone sign errors.	
A1	Correct unsimplified equation.	
A1	Correct answer, 2/3sf	
4(c)	,	
M1	Expression for total work done. Dimensionally correct with all required terms and no extras or double counting. Mass must be replaced with 70. (the 200 may be used as 8x25)	
A1	Correct unsimplified expression for total work done.	
A1	Correct answer, 2/3sf	
	N.B. Penalise accuracy only once in entire question. N.B. Answers only in part a) M0A0M0A0, part b) M0B0M0A0 and in part c) M1A1A1	

QUESTION	SCHEME	MARKS
NUMBER		
5	Accept column vectors throughout the question.	
	Velocity in component form	
	eg 450: 1 (: 450): 1: 1:	M1 A1
	$\mathbf{v} = (v\cos 45^{\circ})\mathbf{i} \pm (v\sin 45^{\circ})\mathbf{j}$ Or $\mathbf{v} = \lambda \mathbf{i} \pm \lambda \mathbf{j}$	
	Change in momentum in vector form	M1 A1
	$0.5\mathbf{v} - 0.5(6\mathbf{i})$	
	Use of magnitude of impulse to form an equation in one	M1 A1
	unknown.	
	eg	
	$\frac{3\sqrt{2}}{2} = \sqrt{\left(0.5v\cos 45^{\circ} - 3\right)^{2} + \left(0.5v\sin 45^{\circ}\right)^{2}}$	
	OR $\frac{3\sqrt{2}}{2} = \sqrt{(0.5\lambda - 3)^2 + (0.5\lambda)^2}$	
	$\frac{\partial R}{\partial x} = \sqrt{(0.5\lambda - 3)^2 + (0.5\lambda)^2}$	
	$-\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j}$	
	$-\frac{1}{2}I+\frac{1}{2}J$	A1 A1
	3. 3.	
	$-\frac{3}{2}\mathbf{i} - \frac{3}{2}\mathbf{j}$	
		(8)
	Notes for question	(-)
	Accept column vectors throughout the question.	
M 1	Velocity after impact as components in variable form.	
A1	Correct unsimplified expressions	
	Eg $\mathbf{v} = (v\cos 45)\mathbf{i} \pm (v\sin 45)\mathbf{j}$ or $\mathbf{v} = \lambda \mathbf{i} \pm \lambda \mathbf{j}$	
M1	$m(\mathbf{v} - \mathbf{u})$ used in vector form.	
A1	Correct unsimplified expression, $0.5\mathbf{v} - 0.5(6\mathbf{i})$	
M1	Use of magnitude of impulse to form an equation in one	
	unknown.	
	Eg_	
	$\frac{3\sqrt{2}}{2} = \sqrt{(0.5v\cos 45^\circ - 3)^2 + (0.5v\sin 45^\circ)^2} (\Rightarrow v = 3\sqrt{2})$ Or $\frac{3\sqrt{2}}{2} = \sqrt{(0.5\lambda - 3)^2 + (0.5\lambda)^2} (\Rightarrow \lambda = 3)$	
	$\frac{1}{2} = \chi(0.5 \times 605 + 5 \times 5) + (0.5 \times 511 + 5) + (-5 \times 5 \times 5)$	
	Or $\frac{3\sqrt{2}}{2} = \sqrt{(0.5\lambda - 3)^2 + (0.5\lambda)^2}$ $(\Rightarrow \lambda = 3)$	
	$Or {2} = \sqrt{(0.5\lambda - 3) + (0.5\lambda)} \qquad (\Rightarrow \lambda = 3)$	
A1	Correct unsimplified equation.	ĺ
A1	At least one correct expression for impulse must be in $p\mathbf{i}+q\mathbf{j}$	
	form for this mark	
A1	Two correct expressions for impulse. Do not penalise lack of	
	pi+qj form twice.	
	N.B. Case1 : If solution appears as per scheme, then full	
	marks possible	
	Case 2: If no ± in line one but two solutions emerge at end,	
	then full marks available	
	Case 3: If only one sign used in line one, and only one	
	solution appears at end, then max M1A0M1A1 M1A1A1A0	

QUESTION	SCHEME	MARKS
NUMBER		
6		
	c	
	a	
	0.8d	
	A = 2d	
		3.61
6(a)	A complete method to find an equation in T , m , g , k (and α).	M1
	E.g. Moments about <i>A</i>	A1, A1
	$(T\cos\alpha\times2d) = (mg\times d) + (kmg\times2d)$	
	$T = \frac{mg\sqrt{29}}{4}(2k+1) *$	A1*
	$I = \frac{1}{4} (2\kappa + 1)^{-\kappa}$	
		(4)
6(b)	Vertical equation	M1
	Correct equation	
	Eg Vertical equilibrium $Y + T \cos \alpha = mg + kmg$	A1
	Horizontal equation	M1
	Correct equation	
	Eg Horizontal equilibrium $X = T \sin \alpha$	A1
	Use of $\tan \theta = \frac{Y}{Y}$ to form an equation in k only	M1
	Use of $tan \theta = \frac{1}{X}$ to form an equation in k only	
	$k = \frac{11}{10}$ or 1.1	A1
	$\kappa = \frac{10}{10}$ or 1.1	
		(6)
		(10)
	Notes for question	
6(a)		
M1	A complete method to find an equation in T , m , g , k and α or size	
	of angle at B , say β . Dimensionally correct with all required	
	terms. Condone sign errors and sin/cos confusion. 'g' missing,	
1.4	count as one accuracy error	
A1	Correct unsimplified equation(s) with at most one error.	
A1	Correct unsimplified equation(s).	
A1*	Complete method to substitute trig and correctly obtain the given	
	answer. At least one line of working between the equation and	
	the given answer. Note: $\cos \alpha = \frac{2}{\sqrt{29}}$, $\sin \alpha = \frac{5}{\sqrt{29}}$, $\tan \alpha = \frac{5}{2}$	
	າ	
	$\sin \beta = \cos \alpha$, $\cos \beta = \sin \alpha$, $\tan \beta = \frac{2}{5}$	
	Allow factor as $(2k+1)$ or $(1+2k)$	
6(b)		

M1	Resolve vertically. Dimensionally correct with all terms required.	
	Condone sign errors and sin/cos confusion. Must be using correct	
	angle	
A1	Correct unsimplified equation. Allow for Y downwards ie +/-Y	
M1	Resolve horizontally. Dimensionally correct with all terms	
	required. Condone sign errors and sin/cos confusion. Must be	
	using correct angle.	
A1	Correct unsimplified equation.	
M1	Use of $\tan \theta = \frac{Y}{X}$ to form an equation in k only, so $+/-1/8$ or $+/-8$ must have been used. Allow for Y downwards ie $-Y/X$, consistent with first use of their Y	
A1	Correct value for <i>k</i> . Must be exact .	
	N.B For X and Y allow use of $R\cos\theta$ and $R\sin\theta$ or N and μN	

QUESTION NUMBER	SCHEME	MARKS
7	N.B. throughout this question refer to diagram for the direction of speeds and then apply to equations. N.B. Correct mass-speed pairings are needed for all M marks	
	$ \begin{array}{c c} 2u \\ \hline P \\ 2m \end{array} $ $ \begin{array}{c} Q \\ 3m \end{array} $ e	
	$v \longrightarrow w$	
7(a)	CLM $2m(2u) - 2m(-u) + 3m(u)$	M1 A1
	2m(2u) = 2m(-v) + 3m(w)	
	Use of impact law $a(2u) - w + v$	M1 A1
	$e(2u) = w + v$ $w = \frac{4u}{5}(e+1)*$	A1*
	5 (6.12)	(5)
7(b)	Find an expression involving v , e and u	M1
	Correct expression Eg $v = \frac{2u}{5}(3e-2)$	A1
	Use $v > 0$ to form an inequality in e , $\Rightarrow \frac{2}{3} < e \le 1$	A1
		(3)
7(c)	Use of Impulse-momentum	M1
	$\frac{108mu}{25} = 3m \times \frac{4u}{5} (e+1)$	A1
	$e = \frac{4}{5}$ *	A1*
		(3)
7(d)	$ \begin{array}{cccc} 0.16u & & 1.44u \\ \hline P & & & Q \\ 2m & & & & R \\ \hline Sm & & & & & e = \frac{4}{5} \end{array} $	
	v = 0.16u , 4/25u Allow +/-	B1
	Use of CLM with their v 3m(1.44u) = 3m(-x) + 5m(y)	M1
	$3m\left(\frac{4u}{5}(e+1)\right) = 3m(-x) + 5m(y)$	

	Use of impact law with their <i>v</i>	M1
	0.8(1.44u) = x + y	
	$e\left(\frac{4u}{5}(e+1)\right) = x + y$	
	Correct expression	A1
	x = 0.18u o.e.	
	Compare the speed of P after the first collision with the speed of Q after the second collision. ($v = 0.16u$ and $x = 0.18u$)	dM1
	Since $0.18u > 0.16u$ a third collision will occur (between <i>P</i> and <i>Q</i>)	A1
		(6)
		(17)
7()	Notes for question	
7(a) M1	Equation for CLM. Dimensionally correct, all terms required.	
IVII	Condone sign errors.	
A1	Correct unsimplified equation.	
M1	Use of impact law. Condone sign errors but must be used the	
	right way round.	
A1	Correct unsimplified equation, signs consistent with CLM.	
A1*	Obtain given answer from correct working. Must be factorised with $(e+1)$ for this mark. Allow $(1+e)$	
7(b)		
M1	Find an expression involving their v_p after the first collision with u and e only for their direction	
A1	Correct unsimplified expression for v_p after the first collision with u and e for their direction.	
A1	Use the direction of <i>P</i> and their expression for <i>v</i> to form a correct inequality in <i>e</i> , both ends required.	
7(c)		
M1	Use of impulse-momentum equation. Dimensionally correct, condone sign errors.	
A1	Correct unsimplified equation.	
A1*	Obtain given answer from complete and correct working. At least one line of working form equation to answer as a 'Show that'	
7(d)		
B1	Correct expression seen for speed of Q after the first collision. Allow -0.16 u ,-4/25 u	
M1	Form relevant CLM equation using given answer from (a). Dimensionally correct, all terms required. Condone sign errors. No need for <i>e</i> to be replaced.	
M1	Use of impact law with given answer from (a). Condone sign errors but must be used the right way round. No need for <i>e</i> to be replaced.	

A1	Correct expression from correct working for the speed and	
	direction of Q after the second collision, e must be replaced.	
	Allow +/- answer o.e	
dM1	Compare the speed of <i>P</i> after the first collision with the speed of	
	Q after the second collision ($v = 0.16u$ and $x = 0.18u$)	
	Dependent on two previous M marks. Velocities must have been	
	found in terms of <i>u</i> prior awarding this mark	
A1	Cso. Since $0.18u > 0.16u$ a second collision could occur	
	between P and Q	
	N.B. if all that is seen is '. ($v = 0.16u$ and $x = 0.18u$) and then	
	so second collision'. This is M0A0 as no comparison has	
	occurred.	