Q	Scheme	Mark	Notes
1a	Use of $v = \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	At least 2 powers going down by 1. Clear division by t is M0
	$v = 6t^2 - 42t + 60$	A1	Correct only
	Set $v = 0$ and correctly solves to obtain 2 values for <i>t</i>	M1	Complete method to obtain both values (implied by correct answers seen) $(0 = t^2 - 7t + 10 = (t - 2)(t - 5))$
	Obtain $t = 2$ and $t = 5$	A1	Correct only. Allow 2.0, 5.0
		[4]	
1b	Distance = $ x_2 - x_1 + x_3 - x_2 $ (= $ 45 - 52 + 52 - 41 $)	M1	Correct strategy dependent on their t being in $1 < t < 3$
	=11+7=18(m)	A1	Correct only
		[2]	
1c	Use of $a = \frac{\mathrm{d}v}{\mathrm{d}t}$	M1	Differentiate their v. Clear division by t is M0. A power going down by 1 (a = 12t - 42)
	Obtain $6(ms^{-2})$	A1	Must be positive – the Q asks for magnitude
		[2] (8)	

Q	Scheme	Mark	Notes
2a	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	M1	NB: Column vectors are acceptable.
			Condone wrong order but must be
			subtracting.
			Condone 5 in place of 0.5.
	$2\mathbf{i} + 5\mathbf{j} = 0.5(\mathbf{v} - (3\mathbf{i} + \mathbf{j}))$	A1	Correct unsimplified equation
			Accept as a vector equation or as a
	$(\mathbf{v} = 7\mathbf{i} + 11\mathbf{j})$		pair of equations, one for each
	(component.
			Accept alternative notations
	Use of Dythe cores	M1	provided the meaning is clear. For their v
	Use of Pythagoras	1V1 1	Independent M1 but they must have
			a v
	$ v = \sqrt{121 + 49} = \sqrt{170} \left(m \mathrm{s}^{-1} \right)$	A1	$13(ms^{-1})$ or better. (13.038)
		[4]	
2b	Correct use of trigonometry e.g.	M1	Condone subtraction in either order.
	$0 t = t^{-1} 11 t = t^{-1} 1$		Allow if both fractions are the other
	$\theta = \tan^{-1} \frac{11}{7} - \tan^{-1} \frac{1}{3}$		way up.
	(=57.5-18.4)		Alternatives:
			scalar product
			$\theta = \cos^{-1}\left(\frac{21+11}{\sqrt{10}\sqrt{170}}\right)$
			cosine rule
			$4 \times 29 = 10 + 170 - 2\sqrt{10}\sqrt{170}\cos\theta$
	$\theta = 39.1$	A1	Accept ±39 or better (39.0938)
			0.68(2) radians is M1A0
			Accept $\pm (360-39) = \pm 321$ or better
		[2]	
		(6)	

Q	Scheme	Mark	Notes
3a	$E_{-} = \frac{1}{2} \chi^2 g_{2} g_{2} g_{3} g_{4} (-5.00)$	M1	Use of $F = \mu R$
	$F_{\max} = \frac{1}{3} \times 2g \cos \alpha \ (= 5.90)$		Seen or implied.
			Condone sine / cosine confusion
			Condone g missing
	WD against friction $= 6 \times their F_{max}$	M1	(=35.4(J)) Seen or implied as
			part of the 4 th M mark
	PE gain = $2g \times 6 \times \sin \alpha$	M1	dimensionally correct. Condone
	$\left(=6\times\frac{42}{5}=50.4\right)$		sine / cosine confusion
	Total $WD = WD$ against friction + WD		Dependent on the 3 preceding M
	against gravity (gain in PE)	DM1	marks. Require both terms and
			no extras
	Total WD = $85.8(J)$ or $86(J)$	A1	3 sf or 2 sf only
			$\left(8\sqrt{10}+36\right)\frac{g}{7}$ is A0 (incorrect
			units)
	NB a candidate who resolves parallel to	-	e but never multiplies either
	component by 6 will score the first M1 o		
		[5]	
3b	Work-energy equation	M1	Must be using work-energy.
	(KE gained = loss in GPE - WD		Need all terms, no extras and
	against friction)		dimensionally correct.
			Condone sign errors
			Condone sine / cosine confusion.
	$\frac{1}{2} \times 2v^2 = 2g \times 6\sin\alpha - 6 \times \frac{2}{3}g\cos\alpha$	A1	Unsimplified equation with at
	2 3	A1	most one error Correct unsimplified equation.
			Concet unsimplified equation.
			They must have started with
			correct expressions, but follow
			through on any calculation errors
	$v = 3.87 (m s^{-1}) or 3.9 (m s^{-1})$	A1	3 sf or 2 sf only
		[4]	
		(9)	

Q		Scheme		Mark	Notes
4a					pes (e.g. a trapezium) the centres of
	mass must be quoted correctly or a correct method used to find the position to score an marks.				ed to find the position to score any
	rectangle	-triangle	+triangle		Correct mass ratios for a correct
	$20a^2$	$-\frac{9}{2}a^{2}$	$\frac{9}{2}a^{2}$	B1	division of the folded template and
	2 <i>a</i>	3 <i>a</i>	2 <i>a</i>		correct total of $20a^2$ Correct distances from <i>AD</i> seen or
	or			B1	implied.
	rectangle	rectangle	Double triangle		B0B1 is possible if they have incorrect masses but a full set of
	$3a^2$	$8a^2$	$9a^2$		correct distances. e.g. if they use the
	$\frac{1}{2}a$	2 <i>a</i>	2 <i>a</i>		second alternative but have not doubled the triangle. Or they might
	or	1	,		have a correct split with an error in
	rectangle	trapezium	triangle		one of the areas or an incorrect (or
	$5a^2$	$\frac{21}{2}a^{2}$	$\frac{9}{2}a^{2}$		missing) total
	$\frac{1}{2}a$	$\frac{48}{21}a$	2 <i>a</i>		or equivalent
	Moments abo	ut AD or a par	allel axis.	M1	Dimensionally consistent.
		1			All terms for a correct division of L
					and no extras.
	2			4.1	Accept as part of a vector equation
	$40a^3 - \frac{27}{2}a^3$	$+9a^3 = 20a^2a$	d	A1	Correct unsimplified equation for their axis. Allow for correct
	or $\frac{3}{2}a^3 + 16a^3$	$^{3}+18a^{3}=20a^{3}$	a^2d		component in a vector equation.
	or $\frac{2}{2}a^3 + \frac{48}{2}a^3 + 9a^3 = 20a^2d$				
	, 71 , *		A1*	Obtain given answer from correct	
	$d = \frac{71}{40}a *$				working. Need at least one line of working to collect like terms e.g.
					$20d = \frac{71}{2}a$ Final answer must be
					as printed i.e. $d = \dots$
				[5]	
4b	Moments abo	out S		M1	A complete method to get an
					equation in W and F only.
					Need all terms and no extras.
					Dimensionally consistent.
	f they start by finding the centre of mass for the system they do not score marks until they				hey do not score marks until they
	he moments eq		bout $A(a a d a$	nd lange	as distances in their constian) this is
	ey are clearly using moments about A (e.g. d and 4a used as distances in their equation) this is unless they include the reaction at S and resolve to form the required equation.				
					incorrect distance allow M1A1A0A0
	0.1			Al	Unsimplified equation with at most
	$4W \times \frac{31}{40}a +$	$W \times 3a = F \times$	5 <i>a</i>		one error
	or $(4W+W)$			A1	Correct unsimplified equation
	$F = \frac{61}{50} M$	· /		A1	Accept 1.22 <i>W</i> or 1.2 <i>W</i>
	50				*
				[4]	
				(9)	

Q	Scheme	Mark	Notes
5a	Use of $P = Fv$	M1	$\frac{10000}{16} (= 625) \text{ o.e. seen or}$ implied in the working. Allow for $\frac{10}{16}$
	Equation of motion for the system	M1	Dimensionally correct. Need all terms and no extras. Condone sign errors and sine/cosine confusion If they start with separate equations for the van and trailer, just mark the combined equation.
	$F - 400 - 800g\sin\alpha = 800a$	A1 A1	Unsimplified equation in P or F with a most one error Correct unsimplified equation in
			<i>P</i> or <i>F</i> Use of cosine in place of sine for both vehicles counts as a repeated error and only loses 1 mark
	Obtain deceleration	A1	3 sf or 2 sf only
	$0.419(m s^{-2}) \text{ or } 0.42(m s^{-2})$		Answer must be positive.
		[5]	
5b	Equation of motion for the van or the trailer	M1	Dimensionally correct. Need all terms and no extras. Condone sign errors and sine/cosine confusion Use the mass in the <i>ma</i> term to decide which part of the system they are using.
	$T - 150 - 200g\sin\alpha = 200a$	A1	Unsimplified equation with at
	or $F - T - 250 - 600g \sin \alpha = 600a$	A1	most one error Correct unsimplified equation
	Obtain tension 206(N) or 210(N)	A1	3 sf or 2 sf only
		[4]	
		(9)	

Q	Scheme	Mark	Notes
6a	$ \begin{array}{c} P \\ 2m \\ P \\ 2m \\ C \\ M \\ 40 \\ N \\ H \end{array} $		
	Moments about A:	M1	Dimensionally correct. Condone sine / cosine confusion
	$5P = 40 \times \frac{7}{2} \cos \theta$ $P = 22.4 *$	A1	Correct unsimplified equation
	P = 22.4 *	A1*	Obtain given answer from correct working. Need to see evidence of $\cos \theta = \frac{4}{5}$
		[3]	
6b	Two equations required. M1A1 for the first equation seen, M1A1 for the second equation. If more than 2 equations mark the two equations used to obtain the resultant, or the best 2 if they do not go on to find the resultant. First equation M1 e.g. Resolve horizontally Condone sine / cosine confusion		
	$H = P\sin\theta \left(=13.44\right)$	A1	Correct unsimplified equation
	Second equation	M1	e.g. Resolve vertically Condone sine / cosine confusion
	$V + P\cos\theta = 40 \left(V = 22.08 \right)$	A1	Correct unsimplified equation
	$\left R\right = \sqrt{H^2 + V^2}$	DM1	solve for $ R $ Dependent on the 2 preceding Ms
	R = 26 (N)	A1	Or better (25.84879) Accept $\frac{24\sqrt{29}}{5}$
		[6]	
	Two alternatives on	followin	ng page

6balt	First equation	M1	e.g. Resolve parallel Condone sine / cosine confusion			
	$X = 40\sin\theta (= 24)$	A1	Correct unsimplified equation			
	Second equation	M1	e.g. Resolve perpendicular Condone sine / cosine confusion			
	$Y + P = 40\cos\theta \left(Y = 9.6\right)$	A1	Correct unsimplified equation			
	$\left R\right = \sqrt{X^2 + Y^2}$	DM1	solve for $ R $ Dependent on the 2 preceding Ms			
	R = 26 (N)	A1	Or better (25.84879) Accept $\frac{24\sqrt{29}}{5}$			
		[6]				
	Alternative equations: $M(C) 40 \times 1.5 \cos \theta + H \times 5 \sin \theta = V \times 5$	$5\cos\theta$				
	$M(B) 2P + 7\cos\theta \times V = 7\sin\theta \times H + 3.5 \times 40\cos\theta$					
	$M(G) 1.5P + 3.5\sin\theta \times H = 3.5\cos\theta \times V$					
(1 1)		2.61				
6balt	a 22.4 N	M1	3 force diagram seen or implied			
	$\begin{array}{c} \theta \\ 40 \text{ N} \\ R \text{ N} \end{array}$	A1	Forces and angle in correct positions			
	Use Cosine Rule	M1	Correct formula used			
	$(R)^2 = 40^2 + 22.4^2 - 2 \times 40 \times 22.4 \cos \theta$	A1	Correct unsimplified equation			
	Substitute for trig and solve for $ R $	DM1	Dependent on the 2 preceding Ms			
	R = 26 (N)	A1	Or better (25.84879) Accept $\frac{24\sqrt{29}}{5}$			
		[6]				
		(9)				

Q	Scheme	Mark	Notes
7a	$ \begin{array}{c} \longrightarrow 6u & \longrightarrow u \\ \hline P \\ m & \hline Q \\ 5m \\ x \leftarrow & \longrightarrow v \end{array} $		If 6 <i>u</i> and <i>u</i> are in opposite directions, mark as a sign error.
	Use of CLM	M1	Need all 4 terms. Dimensionally consistent. Condone sign errors Condone <i>x</i> in the wrong direction
	6mu + 5mu = 5my - mx $(11u = 5y - x)$	A1	Correct unsimplified equation
	Use of impact law	M1	Used correctly. Dimensionally correct. Condone sign errors
	x + y = 5eu	A1	Correct unsimplified equation. Signs consistent with their CLM equation
	Solve for x in terms of e and u: 6x = 25eu - 11u or solve for e in terms of y and u: $e = \frac{6y - 11u}{5u}$	DM1	Dependent on the first 2 M marks. As far as $kx =$ Dependent on the previous 2 M marks
	Use $x > 0 \ (\Rightarrow y > \frac{11}{5}u)$: $25e > 11$	DM1	Use correct inequality for their x
	$\frac{11}{25} < e (\leqslant 1)$	A1	Or equivalent. Condone if 1 not mentioned. Allow with <1. A0 if incorrect upper limit. cso
		[7]	
7b	$x = \frac{2}{3}u$ and $y = \frac{7}{3}u$	B1	Seen or implied
	Total KE lost = $\left(\frac{1}{2}m \times 36u^2 + \frac{1}{2}5m \times u^2\right)$ - $\left(\frac{1}{2}m \times x^2 + \frac{1}{2}5m \times y^2\right)$	M1	Complete expression. Dimensionally correct. Correct masses connected to correct speeds. Condone subtraction in the wrong order. Allow in x and y
	$= \left(\frac{1}{2}m \times 36u^{2} + \frac{1}{2}5m \times u^{2}\right)$ $-\left(\frac{1}{2}m \times \frac{4}{9}u^{2} + \frac{1}{2}5m \times \frac{49}{9}u^{2}\right)$	A1ft	Correct unsimplified expression in m and u . Follow their x, y with e substituted
	$=\frac{20}{2}mu^2$	A1	Or single term equivalent.
	3	r 41	Accept $6.7mu^2$ or better
7c	velocity of Q after collision with wall	[4]	
	$=\pm fy \left(=\pm f \times \frac{7}{3}u\right)$	B1ft	Follow their y (in terms of u)
	Second collision if $fy > x \frac{7}{3} fu > \frac{2}{3} u$	DM1	Correct inequality for their <i>x</i> , <i>y</i> Dependent on the B1 and <i>P</i> moving away from the wall
	$\frac{2}{7} < f \leqslant 1$	A1	Correct only Need both limits
		[3]	
		(14)	

Q	Scheme	Mark	Notes
8a	Use symmetry to find time taken: -7 = 7 - gt	M1	Or equivalent complete method using <i>suvat</i> to find the time taken e.g. find the time for vertical distance $= 0$
	$t = \frac{14}{g} (= 1.428)$	A1	Correct value seen or implied
	Horizontal distance $= 4t$	DM1	Complete method using <i>suvat</i> to find the distance. Dependent on the preceding M1
	= 5.71(m) or 5.7(m)	A1	3 sf or 2 sf only $\frac{40}{7}$ scores A0
			$\frac{56}{g}$ scores A0 (incorrect units)
		[4]	
8a alt	Find speed and angle of projection	M1	Correct use of Pythagoras and trig.
	Speed = $\sqrt{16 + 49} = \sqrt{65} (m s^{-1})$	A1	Both values seen or implied.
	Direction = $\tan^{-1}\frac{7}{4}$ (= 60.3°)		
	Use of $R = \frac{u^2 \sin 2\alpha}{\alpha}$	DM1	Or equivalent. Dependent on the preceding M1
	g = 5.71(m) or 5.7(m)	A1	3 sf or 2 sf only
		[4]	
8b	$ \mathbf{v} = 5 \Longrightarrow \mathbf{v} = 4\mathbf{i} + 3\mathbf{j} \text{ or } \mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$	B1	Correct vertical component seen or implied
	-3 = 3 - gT	M1	Complete method to find T
			e.g. $T = \frac{14}{g} - 2 \times \frac{4}{g}$
	T = 0.612 or T = 0.61	A1	$\frac{g}{3} \frac{g}{g}$ 3 sf or 2 sf only $\frac{30}{49}$ scores A0
			$\frac{6}{g}$ scores A0 (incorrect units)
		[3]	
8c	$\begin{pmatrix} 4 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ p \end{pmatrix} = 0$	M1	Or equivalent method to find perpendicular velocity
	$\Rightarrow p = -\frac{16}{7}, \mathbf{v} = 4\mathbf{i} - \frac{16}{7}\mathbf{j}$	A1	Correct vertical component Allow -2.28
	$\Rightarrow p = -\frac{16}{7}, \mathbf{v} = 4\mathbf{i} - \frac{16}{7}\mathbf{j}$ $\left(\left(-\right)\frac{16}{7}\right)^2 = 7^2 - 2gh$	DM1	Complete method using <i>suvat</i> or energy to form an equation in h only. Dependent on the preceding M1
	h = 2.23 or $h = 2.2$	A1	3 sf or 2 sf only cso (negative vertical component seen at some point)
		[4]	
8c alt	$\begin{pmatrix} 4 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 7 - gt \end{pmatrix} = 0$	M1	Or equivalent method to find time when velocity perpendicular
	$\begin{pmatrix} 4 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 7 - gt \end{pmatrix} = 0$ $t = \frac{65}{7g} (= 0.947)$	A1	Correct time
	$h = 7t - \frac{1}{2}gt^2$	DM1	Complete method using <i>suvat</i> to form an equation in <i>h</i> only.
	h = 2.23 or $h = 2.2$	A1	3 sf or 2 sf only cso
		[4]	
		(11)	