1a	Equation of motion	M1	Dimensionally correct. Condone sign
	F - R = 1500a	Al	error. Correct unsimplified equation in <i>F</i> or <i>P</i>
	Use of $P = Fv$: $\left(\frac{30000}{20} - R = 1500 \times 0.6\right)$	M1	Must be trying to use 30 kW but condone error in zeros
	R = 600	Al	Correct answer only
		4	
1b	Equation of motion	M1	Dimensionally correct. Need all relevant terms. Condone sign errors and sin/cos confusion. Allow with <i>F</i> .
	$\frac{30000}{V} - 1500g \times \frac{1}{8} - 500 = -1500 \times 0.2$	A1	Unsimplified equation with F substituted and at most one error Correct unsimplified equation with F
		A1	substituted. If <i>F</i> is never substituted, A0A0
	V = 14.7 (15)	A1	3 sf or 2 sf
		4	
		(8)	
2	1 st equation e.g. Equation for change in KE	M1	Dimensionally correct. Must be subtracting but condone sign error.
	$\frac{1}{2} \times 0.5 \left(x^2 + y^2 - (5^2 + 3^2) \right) = 22$ $\left(x^2 + y^2 = 122 \right) \left(1^2 + (2\lambda + 3)^2 = 122 \right)$	A1	Correct unsimplified equation seen or implied (They might have used impulse- momentum first and done some work before substituting <i>x</i> and <i>y</i> .)
	2 nd equation e.g. Impulse-momentum equation	M1	Dimensionally correct. Must be subtracting but condone sign error.
	$0.5(x\mathbf{i} + y\mathbf{j}) - 0.5(5\mathbf{i} + 3\mathbf{j}) = (-2\mathbf{i} + \lambda\mathbf{j})$ $((x-5)\mathbf{i} + (y-3)\mathbf{j} = -4\mathbf{i} + 2\lambda\mathbf{j})$	A1	Correct unsimplified equation
	NB: epen has M1A1A1 for the final 3 marl	ks but th	is should be marked DM1DM1A1
	Form a quadratic equation in λ	DM1	e.g. $1^{2} + (3 + 2\lambda)^{2} = 122$ Dependent on the 2 preceding M marks
	Solve for 2 values of λ	DM1	e.g. solve $4\lambda^2 + 12\lambda - 112 = 0$ or $(3+2\lambda)^2 = 121$ Dependent on the preceding M1
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1	Correct only and no errors seen (watch out for $x = -1$ used)
alt	Form a quadratic in y	DM1	e.g. $1+y^2 = 122$ ($y^2 = 121$) Dependent on the 2 preceding M marks
	Solve for 2 values of y and use these to obtain 2 values of λ	DM1	Dependent on the preceding M1
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1	
		7	

3a	rectangle triangle lamina	area $48a^2$ $18a^2$ $30a^2$	distance from AE 4a 8a - 2a(= 6a)	B1 B1	Mass ratio correct Distances from <i>AE</i> (or parallel axis) correct
	M(AE)			M1	Allow use of a parallel axis. The moments equation should include <i>a</i> but condone if the mass ratio does not include a factor of a^2 . Dimensionally correct.
	$48a^2 \times 4a - 18a^2 \times 6a = 30a^2\overline{x}$		A1	Correct unsimplified equation for their axis. Accept as part of a vector equation.	
	$\overline{x} = \frac{84}{30}a = \frac{14}{5}a$ *		A1*	Obtain given answer from correct working (including correct use of a)	
					If they take moments about <i>BD</i> they get $d = 5.2a$ Allow B1B1M1A1A0 if they get this far.
				5	
3b	Find trig ration	o of a rele	evant angle	M1	Correct use of trig.
	$\tan \theta^{\circ} = \frac{3a}{2.8a}$	- i		A1	Correct equation for the required angle. (DO NOT ISW: If they obtain 47 and then use $90 - 47 = 43$ they score M1A0A0)
	$\theta = 4^{\circ}$	7		A1	The Q asks for a whole number of degrees. 0.82 radians scores M1A1A0
				3 (8)	

4a	Use $t = 2$ and $3t^{2} + 2t = t^{3} + kt$ (12+4=8+2k)	M1	Allow verification.
	k = 4 *	A1*	Obtain given answer from correct working. Verification requires a clear conclusion.
		2	
4b	Use of $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate the vector v Majority of powers going down
	$\mathbf{a} = (6t+2)\mathbf{i} + (3t^2+4)\mathbf{j}$	A1	Correct only
	Use $ \mathbf{F} = m \mathbf{a} $	DM1	Correct use of Pythagoras and N2L Dependent on the preceding M1
	$\left \mathbf{F}\right = 1.5 \times \sqrt{14^2 + 16^2} = 3\sqrt{113}$	A1	Or $\frac{3}{2}\sqrt{452}$ or 32 or better (31.89)
		4	
4c	Use of $\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1	Majority of powers going up
	$\mathbf{r} = \left(t^3 + t^2\left(+A\right)\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2\left(+B\right)\right)\mathbf{j}$	A1	Allow without constant of integration
	Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find r when $t = 2$	DM1	$\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0
	r = 15i + 16j	A1	Correct answer only. Accept column vector
		4	
		(10)	

_	2		
5a	Use of $F_{\text{max}} = \mu R$: $F_{\text{max}} = \frac{2}{7} \times 1.5g \cos \theta$		(3.87) Condone trig confusion.
			Trig substitution not required.
		M1	Allow M1 if there is a clear statement for
			F_{max} "correct" and then used in a
			calculation including the gain in GPE
	Use of WD = $2.5 F_{max}$	M1	Trig substitution not required.
	max		M0 if they have included the gain in GPE
			If the method for <i>F</i> is incorrect but
			involves the use of μ to obtain F and then
			they use the "work done" formula correctly
			allow M0M1
	WD = 0.60 (0.7)(1)	Al	
	WD = 9.69 (9.7)(J)	111	3 sf or 2 sf not $\frac{126}{13}$
		2	13
£1 .	Work on or an a statistic	3 M1	The O calls for we do not N 1 11
5b	Work-energy equation	M1	The Q asks for work-energy. Need all
			terms and dimensionally correct. Condone
			sign errors and sin / cos confusion
	If their answer to (a) included the GPE then it must be used for the total work done here to score the M1		
	the M1	Alft	Unsimplified equation with at most one
	$\frac{1}{2} \times 1.5U^2 = WD + 1.5 \times 9.8 \times 2.5 \times \sin\theta$	AIII	error.
		Alft	Correct unsimplified equation Follow
			their WD against friction
		Al	3 sf or 2 sf
	U = 5.64 (5.6)		5 51 01 2 51
		4	
5c	Work-energy equation for A to A	M1	The Q asks for work-energy. Need all
		1411	terms and dimensionally correct.
_	$\frac{1}{2} \times 1.5v^2 - \frac{1}{2} \times 1.5U^2$ 2WD	Alft	Correct unsimplified equation. Follow
	$\frac{1}{2} \times 1.5v^2 = \frac{1}{2} \times 1.5U^2 - 2WD$	ΑΙΠ	their WD against friction and their U
	$v = 2.43 (2.4) (m s^{-1})$	A1	3 sf or 2 sf
	· · · · · · · · · · · · · · · · · · ·	3	
5c	Work-energy equation for <i>B</i> to <i>A</i>	M1	The Q asks for work-energy. Need all
alt			terms and dimensionally correct.
	1	Alft	Correct unsimplified equation. Follow
	$\frac{1}{2} \times 1.5v^2 = 1.5 \times 9.8 \times 2.5 \times \sin \theta - WD$		their WD
	$v = 2.43 (2.4) (m s^{-1})$	A1	3 sf or 2 sf
		3	
		(10)	
	<u>.</u>	()	<u> </u>

6a	$H = \begin{bmatrix} 2 & m \\ 3 & m \\ W \\ W \\ 4 & m \end{bmatrix}$		
	M(A)	M1	Or equivalent method to form an equation in <i>W</i> only. Equation(s) must be dimensionally correct and contain all relevant terms. Condone sin / cos confusion and sign error(s)
	$50 \times 3\cos 30^\circ + W \times 6\cos 30^\circ = 60\sqrt{3} \times 4\sin 30^\circ$		Unsimplified equation with at most one error.
	W = 15 *	A1 A1*	Correct unsimplified equation
	$W = 13^{++}$	A1· 4	Correct answer only
6b	First equation e.g. Resolve vertically	4 M1	Or resolve parallel to pole
00	$(\pm)V + 50 + 15 = T\cos 30^{\circ} (V = 25)$	Al	Or: $P + 50\cos 60^\circ + 15\cos 60^\circ = 60\sqrt{3} \times \frac{\sqrt{3}}{2}$
	Second equation e.g. Resolve horizontally	M1	Or resolve perpendicular to the pole
	$(\pm)H = T\cos 60^{\circ} (= 30\sqrt{3} = 51.96)$	A1	Or: $50\cos 30^\circ + 15\cos 30^\circ = 60\sqrt{3}\cos 60^\circ + Q$
	NB: One of the equations could be a second m	oments	
	$ R = \sqrt{25^2 + \left(30\sqrt{3}\right)^2}$	DM 1	Dependent on the 2 preceding M marks $(\sqrt{57.5^2 + 3 \times 6.25})$
	$=5\sqrt{133}(57.662)$ (N)	A1	58 N or better
		6	Full marks available using $\pm V, \pm H, \pm P, \pm Q$
6b alt	Form vector triangle for the vertical forces, the thrust and the resultant Correct triangle	M1 A1	<i>R</i> 50+15 30*
	Use cosine rule	M1	
	$R^{2} = T^{2} + (50 + W)^{2} - 2T(50 + W)\cos 30^{\circ}$	A1	Correct unsimplified equation
	$R^{2} = (60\sqrt{3})^{2} + (65)^{2} - 2 \times 60\sqrt{3} \times 65\cos 30^{\circ}$	DM 1	Substitute values and solve for $ R $
	$ R = 5\sqrt{133} (57.662)$ (N)	A1	58 N or better
		6	
		(10)	

7a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$ \begin{array}{c} P \\ 3m \end{array} \qquad \qquad$		
	Use CLM	M1	Need all terms and dimensionally correct. Condone sign errors. Might see them using equal (and opposite) impulses.
	$6mu - 3kmu = 3mu + kmv \left(\left(3 - 3k \right)u = kv \right)$	A1	Correct unsimplified equation
	$\Rightarrow v = \frac{(3-3k)}{k}u *$	A1*	Obtain given answer from full and correct working
		3	
7b	Use of Impulse = change in momentum	M1	Must be subtracting. Can be for either particle.
	$\left I_{Q}\right = \left I_{P}\right = \left 3mu - 3m.2u\right = 3mu$ or $\left I_{Q}\right = \left I_{P}\right = \left 3mu - 3m.2u\right = 3mu$	A1	Correct only (Do not need to state that $ I_Q = I_P $ if find
	$\left kmv - (-3mku)\right = \left km \cdot \frac{3-3k}{k}u + 3mku\right = 3mu$		$ I_P)$
		2	
7c	Use impact law:	M1	Seen or implied. If stated in (a) must be used here. Must be used correctly but condone sign errors
	$\frac{v-u}{5u} = e \text{ or } \frac{3-3k}{k}u - u = 5ue$	A1	Correct unsimplified equation
	NB: the second and third M mark are not dependent		the first M mark
	Use $v > u$ or $e > 0$ to form an inequality in k	M1	Could use $e \dots 0$ followed by $v \neq u$
	Use $e_{,,1}$ to form an inequality in k	M1	
	$\frac{3-3k}{k} > 1 \text{ and } 3-3k, \ 6k \Rightarrow \frac{1}{3}, \ k < \frac{3}{4}$	A1	Correct answer only.
		5 (10)	
		(10)	

8a	Condone use of θ or a mixture of θ and α throughout but final answer should be in one variable.			
	Equation for horizontal distance	M1	Complete method using <i>suvat</i> . Condone sine / cosine confusion	
	$x = u \cos \alpha t$	A1	Correct only	
	Equation for vertical distance	M1	Complete method using <i>suvat</i> . Condone sine / cosine confusion and sign error	
	$y = u\sin\alpha t - \frac{1}{2}gt^2$	A1	Correct only	
	$t = \frac{x}{u \cos \alpha} \Longrightarrow$ $y = u \sin \alpha \cdot \frac{x}{u \cos \alpha} - \frac{g}{2} \left(\frac{x}{u \cos \alpha}\right)^2$	DM1	Substitute for <i>t</i> to obtain <i>y</i> in terms of <i>x</i> and α Dependent on the 2 preceding M marks	
	$\Rightarrow y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha) *$	A1*	Obtain given answer from full and correct working. Need some evidence for the final step. $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$ is not sufficient.	
		6		
8b	Conservation of energy:	M1	Method specified in the question. Need all terms and dimensionally correct. Condone sign errors	
	$\frac{1}{2}m \times 25^2 = \frac{1}{2}mU^2 + mg \times 20$	A1	Correct unsimplified equation	
	U = 15.3 (15)	A1	3 sf or 2 sf only	
		3		
8c	Use part (a) or work from first principles to form an equation in $\tan \theta$	M1	$\left(-20 = 30\tan\theta - \frac{9.8 \times 900}{2U^2}\left(1 + \tan^2\theta\right)\right)$	
	Obtain 18.9 tan ² θ - 30 tan θ - 1.07 = 0 $\left(\frac{4410}{233}$ tan ² θ - 30 tan θ - $\frac{250}{233}$ = 0	A1ft	Or 3 term equivalent Follow their U Can be implied by a correct final answer	
	$\Rightarrow \theta = 58.3^{\circ} \text{ or } 58^{\circ}$	A1	3 sf or 2 sf only	
		3		
		(12)		