1a	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	M1	Condone subtraction in the wrong order.
	$\binom{-4}{6} = \frac{1}{2} \binom{x-2}{y-4}$	A1	Correct unsimplified equation Any equivalent form. Allow with v
	$\mathbf{v} = -6\mathbf{i} + 16\mathbf{j} \left(\mathbf{m} \mathbf{s}^{-1}\right)$	A1	Correct only. Seen or implied SR: Allow 3/3 if stop at $\mathbf{v} = 6\mathbf{i} - 16\mathbf{j} (m s^{-1})$
	$ \mathbf{v} = \sqrt{(-6)^2 + 16^2}$ = $\sqrt{292} (= 2\sqrt{73}) (m s^{-1})$	M1	Correct use of Pythagoras with their v
	$=\sqrt{292}\left(=2\sqrt{73}\right)\left(\mathrm{ms^{-1}}\right)$	A1	Correct simplified value. 17 or better (17.088)
			Allow 5/5 if working from the negative of the velocity.
		[5]	
1b	Correct use of trigonometry to find 2 relevant angles - as values or in inverse tangent form	M1	For their v e.g. $\pm 69.44^{\circ}, 63.43^{\circ}$ or $\pm 1.212, 0.4636$
	$\theta = \left(180^{\circ} - \tan^{-1}\frac{16}{6}\right) - \tan^{-1}\frac{4}{2}$	Alft	Correct unsimplified expression for θ Any equivalent form
	= 47°	A1	47° or better (47.121) 312.9° Accept radians (0.8224)
		[3]	
1b alt	Use of scalar product with two relevant vectors	M1	For their v
	$\theta = \cos^{-1}\left(\frac{-12+64}{\sqrt{20}\sqrt{292}}\right)$	Alft	Correct unsimplified expression for $\cos \theta$ or equivalent
	= 47°	Al	47° or better (47.121) 312.9° Accept radians (0.8224)
<u> </u>		[3]	

M2_2022_01_MS

2.a	Equation of motion for car and trailer	M1	Need all terms. Dimensionally correct. Condone sin/cos confusion and sign errors.
	$F - 300 - 150 - \frac{200g}{20} - \frac{600g}{20} = 0$ $(F - 842 = 0)$	A1	Unsimplified equation in P or F with at most one error
	(F - 842 = 0)	A1	Correct unsimplified equation in P or F Missing g is one accuracy error
	$\frac{1000P}{15} (-450 - 98 - 294 = 0)$ P = 12.6 or P = 13	M1	Use of $P = Fv$ Allow with P or 1000P
	P = 12.6 or P = 13	A1	3 s.f. or 2 s.f. only A final answer of 12600 (13000) scores 4/5 Condone 12600=12.6 (correct thinking without stating the units)
		[5]	
2b	KE lost = gain in GPE + WD against resistance	M1	Must be using work-energy principle for trailer only. Dimensionally correct. Correct terms and no extras. Condone sign errors and sin / cos confusion.
	$\frac{1}{2} \times 200 \times 400 = \frac{200}{20} gd + 300d (= 398d)$	A1	Correct unsimplified equation in one variable with at most one error
		A1	Correct unsimplified equation in one variable.
	XY = d = 101 (100) (m)	A1	3 s.f. or 2 s.f. only
		[4] (9)	

	-		
3a	Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ ($\mathbf{a} = 18\cos 3t \mathbf{i} - 2\sin t \mathbf{j}$)	M1	Differentiate to obtain $\mathbf{a} = \lambda \cos 3t \mathbf{i} + \mu \sin t \mathbf{j}$
	Use of $\mathbf{F} = m\mathbf{a}$: $\mathbf{F} = \frac{1}{4}\mathbf{a}$	M1	Must be working in vectors
	$\mathbf{F} = \frac{9}{2}\cos 3t\mathbf{i} - \frac{1}{2}\sin t\mathbf{j}$	A1	Or equivalent. e.g. as a column vector
		[3]	
3b	$2\cos t + 1 = 0$	M1	Set j component of $\mathbf{v} = 0$ and solve for <i>t</i>
	$\Rightarrow t = \frac{2\pi}{3}$	A1	ISW if correct answer seen. Only answer 120° scores A0 here and the final A0
	Use of $\mathbf{v} = \frac{d\mathbf{r}}{dt}$ ($\mathbf{r} = -2\cos 3t \mathbf{i} + (t+2\sin t) \mathbf{j}(+\mathbf{C})$)	M1	Integrate v with respect to t to obtain $\mathbf{r} = p \cos 3t \mathbf{i} + (t + q \sin t) \mathbf{j} (+\mathbf{C})$ Condone if there is no constant of integration.
	$t = 0, \mathbf{r} = \left(4\mathbf{i} - \sqrt{3}\mathbf{j}\right)\mathbf{m}$ $\mathbf{r} = \left(-2\cos 3t + 6\right)\mathbf{i} + \left(t + 2\sin t - \sqrt{3}\right)\mathbf{j}$	M1	Correct use of boundary condition to find their C . Could be part of a definite integral e.g. $4\mathbf{i} - \sqrt{3}\mathbf{j} + \int_0^t 6\sin 3t\mathbf{i} + (1 + 2\cos t)\mathbf{j}dt$ for their upper limit
	$=4\mathbf{i}+\frac{2\pi}{3}\mathbf{j} (m)$	A1 A1	Accept 4i + 2.1j or better one component correct both components correct ISW if they also offer 4i + 120j "correct" components after an M0 are fortuitous – A0
		[6]	
		(9)	
		Ì	
		1	
		Ì	
-			•

	r		
4a	$2u \longrightarrow \\ A \\ 2m \\ v \leftarrow $		$ \begin{array}{c} $
	Use of CLM	M1	Need all terms, dimensionally correct. Condone sign errors.
	4mu - 3mu = 3mw - 2mv $(u = 3w - 2v)$	A1	Correct unsimplified equation
	Use of impact law	M1	Used correctly. Condone sign errors
	v + w = 3eu	A1	Correct unsimplified equation. Signs consistent with their CLM equation
	$\begin{cases} u = 3w - 2v \\ 6eu = 2w + 2v \end{cases}$	DM1	Dependent on both preceding M marks. Solve to find speed of <i>B</i> .
	$\Rightarrow 5w = u + 6eu, w = \frac{1}{5}u(1 + 6e) *$	A1*	Obtain given answer from correct working
		[6]	
4b	$v = 3eu - w = \frac{u}{5}(9e - 1)$	B1	Check their diagram / directions and allow $v = \frac{u}{5}(1-9e)$ if correct for their working. Any equivalent form. Must be seen or used in (b)
	$x = \frac{u}{7} (1 + 6e)$	B1	Seen or implied. Accept \pm
	Second collision if $\frac{u}{7}(1+6e) > \frac{u}{5}(9e-1)$	M1	Correct inequality to find the upper limit for e , using their v and x
	$(0 <)e < \frac{4}{11}$	A1	Final answer. Or equivalent Do not need to mention the lower limit, but if they do it must be stated correctly (strict inequality).
		[4]	

5a	kW		
Ja	∑ B		
	$\neg R$		
	12a 5a		
		D1*	
	Angle ACO is a right angle or	B1*	Or equivalent explanation of given
	state that AB is a tangent hence triangle is $5a$,		answer. They need to say why it is a 5,
	12 <i>a</i> , <u>13<i>a</i> *</u>		12, 13 triangle. If they say nothing,
			check the diagram to see if there is a right angle marked.
		[1]	
5b	Moments about A:		Dimensionally correct equation
50		M1	Condone sin / cos confusion
	$W \times 8a \cos \alpha = kW \times 12a$		
		. 1	
	$W \times 8a \times \frac{12}{1} = kW \times 12a$	A1	Correct unsimplified equation
	(13)		
	$\left(W \times 8a \times \frac{12}{13} = kW \times 12a \right)$ $k = \frac{8}{13} *$		Obtain given answer from correct
	$\kappa = \frac{13}{13}$	A1*	working. Need to see correct
		AI	substitution for $\cos \alpha$ and correct final
			statement.
		[3]	
5c	$\leftrightarrow R_{H} = kW \sin \alpha$	M1	First equation e.g. resolve horizontally.
			Condone sin/cos confusion
	$=\frac{8W}{13}\times\frac{5}{13}=\frac{40W}{169}$	A1	Correct unsimplified expression for R_H
	13 13 169		
	$\uparrow D + bW are \alpha W$	N / 1	Second equation e.g. resolve vertically.
	$\Upsilon R_{v} + kW \cos \alpha = W$	M1	Condone sin/cos confusion and sign
	911/ 10 7211/		errors.
	$R_V = W - \frac{8W}{13} \times \frac{12}{13} = \frac{73W}{169}$	A1	Correct unsimplified expression for R_{V}
	13 13 169		
			Dependent on the two preceding M
	$ R ^{2} = (R_{V})^{2} + (R_{H})^{2}$	DM1	marks. Method to obtain the
			magnitude, e.g.correct use of Pythagoras
			• •
	$ R = \frac{W}{169}\sqrt{40^2 + 73^2}$		Accept $0.49W$ or better
		A1	Allow $41W^2$ or correct unsimplified
	$\sqrt{6929}_{W} \sqrt{41}_{W}$	4 * 1	Allow $\sqrt{\frac{41W^2}{169}}$ or correct unsimplified
	$=\frac{\sqrt{6929}}{169}W=\frac{\sqrt{41}}{13}W$		form. ISW
			Dependent on the first 2 M marks.
	73		Method to obtain the angle, e.g.correct
	$\tan \theta^{\circ} = \frac{73}{40} (=1.825)$	DM1	use of trigonometry to find a relevant
	40		angle $(\theta \text{ or } 90 - \theta)$
	$\theta = 61 (61.3)$	A1	61 or better (61.2796)
		[8]	
	See overleaf for alternatives		
5c	$P = W \sin \alpha$		First equation e.g. resolve parallel to the
Alt		M1	rod. Condone sin/cos confusion.
1			

	$=\frac{5W}{13}$ $Q+kW=W\cos\alpha$	A1	Correct unsimplified expression for parallel component
	$Q + kW = W \cos \alpha$	M1	Second equation e.g. resolve perpendicular to the rod. Condone sin/cos confusion and sign errors.
	$Q = \frac{12}{13}W - \frac{8}{13}W = \frac{4W}{13}$ $ R = \sqrt{P^2 + Q^2}$	Al	Correct unsimplified expression for perpendicular component
		DM1	Dependent on the first 2 M marks. Correct use of Pythagoras
	$ R = \frac{W}{13}\sqrt{4^2 + 5^2} = \frac{\sqrt{41}}{13}W$ $\theta^\circ = \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{4}{5}$	A1	Accept 0.49W or better Allow correct unsimplified form
	$\theta^{\circ} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{5}$	DM1	Dependent on the first 2 M marks. Correct use of trig to find the required angle
	$\theta = 61 (61.3)$	A1	61 or better (61.2796)
		[8]	
5c Alt2	RB	M1	Vector diagram showing the three
	$R \beta$ $kW \alpha$ W	A1	forces acting Correctly configured
	Use of Cosine Rule:	M1	Correct use of cosine rule for their triangle
	$R^{2} = W^{2} + \left(kW\right)^{2} - 2W\left(kW\right)\cos\alpha$	A1	Correct unsimplified equation.
	$R^{2} = W^{2} + \frac{64}{169}W^{2} - \frac{16}{13} \times \frac{12}{13}W^{2} \left(= \frac{41}{169}W^{2} \right)$	DM1	Solve for <i>R</i> . Dependent on the first 2 M marks
	$\left R\right = \frac{\sqrt{41}}{13}W$	A1	Accept 0.49W or better
	$\frac{R}{\sin\alpha} = \frac{kW}{\sin\beta} \left(\sin\beta = \frac{8}{13} \times \frac{\sqrt{41}}{13} \times \frac{5}{13} \right)$	DM1	Dependent on the first M mark. Correct method to find a relevant angle e.g. by use of sine rule
	$\theta = 90 - 28.7 = 61.3$	A1	61 or better (61.2796)
		[8]	
		(12)	
		(12)	

6.	Mass ratio	1	
6a	$24a: 25a: 7\pi a: 7a(7+\pi)$	B1	Correct ratio seen or implied
	Moments about AE	M1	Need all terms, with their masses and horizontal distances Allow use of a parallel axis.
	$25a \times \frac{7}{2}a + 7\pi a \times \frac{14a}{\pi}$ $= 7a(7+\pi)d$	A1	Correct unsimplified equation
	$\frac{371}{2}a^2 = 7a(7+\pi)d$		Obtain given answer from correct
	$\Rightarrow d = \frac{53}{2(7+\pi)}a \qquad *$	A1*	working Condone if they call it \overline{x}
		[4]	
6b	Centre of mass of semicircle lies 7 <i>a</i> "vertically below" <i>A</i>	B1	Seen or implied e.g. 17 <i>a</i> above <i>E</i>
	Moments about "horizontal" axis through A:	M1	Or a parallel axis. Need all terms, with their masses and distances.
	$24a \times 12a + 25a \times 12a + 7\pi a \times 7a$ $= 7a(7 + \pi)y$	A1	Correct unsimplified equation
	$y = \frac{49a(12+\pi)}{7(7+\pi)} \left(= \frac{7a(12+\pi)}{7+\pi} \right)$	A1	Any equivalent form. Accept $\frac{84+17\pi}{7+\pi}a$ from E
	NB: A candidate might have a vector equation in or the first 4 marks in (b).	(a) whicl	$1 + \lambda$
	$\theta^{\circ} = \tan^{-1} \frac{d}{y} = \tan^{-1} \frac{53}{14(12+\pi)} (= 14.037^{\circ})$	DM1	Use trig to find relevant angle $(\theta \text{ or } 90 - \theta)$ in a triangle with <i>d</i> and <i>A</i> (must now be working with vertical distance of C of M from <i>A</i>) Dependent on first M
	$\alpha^{\circ} = \tan^{-1} \frac{7}{24} - \theta^{\circ}$	DM1	Dependent on the previous M1. Complete method for the required angle
	α = 2.2	A1 [7] (11)	2.2 or better (2.22)

7a	Horizontal distance	M1	Correct use of <i>suvat</i>
	$x = u \cos \alpha t$	A1	Correct equation
	Vertical distance	M1	Correct use of <i>suvat</i>
	$y = u \sin \alpha t - \frac{1}{2}gt^2$	A1	Correct equation. Correct signs. Condone if not using "y"
	$t = \frac{x}{u \cos \alpha} \Rightarrow$ $y = u \sin \alpha \cdot \frac{x}{u \cos \alpha} - \frac{g}{2} \left(\frac{x}{u \cos \alpha}\right)^2$ $\left(= x \tan \alpha - \frac{g x^2}{2u^2} \sec^2 \alpha\right)$	DM1	Dependent on the first 2 M marks. Substitute for <i>t</i> to obtain <i>y</i> in terms of <i>x</i> and α
	$y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha) *$	A1*	Obtain given answer from correct working (final step needs to be explained). Allow if $\sec^2 \alpha$ seen. Must be "y" here
		[6]	
7b	$u = 20, x = 10, y > 2 \implies$ $2 = 10 \tan \theta - \frac{100g}{800} (1 + \tan^2 \theta)$ $\left(\frac{g}{8} \tan^2 \theta - 10 \tan \theta + \left(2 + \frac{g}{8}\right) = 0\right)$	M1	Use given values to form quadratic in $\tan \theta$ or equivalent equation in one trig function. Allow working with =, < or > 2
	Critical values: $\theta^{\circ} = 18.6^{\circ}$ or $\theta^{\circ} = 82.7^{\circ}$	A1	One correct value to 2 sf or better
	Range: $18.6 < \theta < 82.7$	A1	Accept < or \leq (19 $\leq \theta \leq 82$ or 83) max 3 sf
		[3]	
7c	$y = 10 \tan 40^{\circ} - \frac{9.8 \times 100}{2 \times 400} \left(1 + \tan^2 40^{\circ}\right)$	M1	Use given formula to find vertical height
	y = 6.3(03) (m)	A1	Can be implied by correctly substituted formula
	Conservation of energy	DM1	Dependent on the first M1. Need all 3 terms. Dimensionally correct. Condone sign errors.
	$\frac{1}{2}mv^{2} = \frac{1}{2}m \times 400 - mgy$ $v = 17 (16.6) (m s^{-1})$	Alft	Correct unsimplified equation in y or their y
	$v = 17 (16.6) (m s^{-1})$	A1	2sf or 3sf only
		[5]	
7c alt	20 cos 40° t = 10 , t = $\frac{1}{2\cos 40^\circ}$ = 0.653 $v_V = 20\sin 40^\circ - gt$	M1	Complete method using <i>suvat</i> to vertical component of speed e.g. by finding time taken then use of v = u - gt or finding vertical distance and using <i>suvat</i>
	= 6.5 (6.459)	A1	6.5 or better (not final answer so allow > 3sf or a correct unsimplified expression)
	$v^2 = \left(v_H\right)^2 + \left(v_V\right)^2$	DM1	Correct use of Pythagoras

			Dependent on preceding M mark
	$\leftrightarrow v_{H} = 20\cos 40^{\circ} (=15.3)$	A1	Horizontal component of speed seen or implied
	$v = 17 (16.6) (m s^{-1})$	A1	2sf or 3sf only
		[5]	
7d	$0 = x \tan 40^{\circ} - \frac{9.8x^2}{800} \left(1 + \tan^2 40^{\circ}\right)$	M1	Complete method to solve for <i>x</i> .
	x = 40 (40.2) (m)	A1	2sf or 3sf only
		[2]	
7d Alt1	$y = 0 \Longrightarrow t = \frac{40\sin 40^{\circ}}{g} (= 2.623)$	M1	Complete method to solve for <i>x</i> .
	$x = 20\cos 40^\circ \times t$		
	$x = 40 \left(40.2 \right) \left(\mathbf{m} \right)$	A1	2sf or 3sf only
		[2]	
7d Alt2	$Range = \frac{20^2 \sin 80^\circ}{g}$ $= 40 (40.2) (m)$	M1	Complete method to solve for <i>x</i> .
	=40(40.2)(m)	A1	2sf or 3sf only
		[2]	
		(1()	
		(16)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom