Q	Solution	Mark	Guidance
1a	$F = \mu R = \frac{1}{5} mg \cos \alpha$	B1	Seen or implied
	Work done = force x distance	M1	Correct method for work done against friction
	$=\frac{1}{5}mg\times\frac{12}{13}\times d=\frac{12}{65}mgd *$	A1*	Obtain given answer from correct working.
		(3)	
1b	Work-energy equation	M1	All terms required and dimensionally correct. Condone sign errors and sin/cos confusion
	$\frac{1}{2}mv^2 = mg \times d \times \frac{5}{13} - \frac{12}{65}mgd\left(=\frac{13}{65}mgd\right)$	A1 A1	Unsimplified equation with at most one error Correct unsimplified equation
	$v = \sqrt{\frac{2gd}{5}}$	A1	Or exact equivalent e.g. $\sqrt{\frac{26}{65}gd}, \frac{1}{5}\sqrt{10gd}$
			Accept $0.63\sqrt{gd}$ or better
		(4)	
		[7]	
2	Equation of motion down the slope	M1	First equation (either direction). Condone sign errors and sin/cos confusion
	$F_{1} + 450g \times \frac{1}{15} - R = 450 \times 0.5$	A1	Unsimplified equation with at most one error. Correct unsimplified equation
	$\left(\frac{P}{12} + 30g - R = 225\right) \left(\frac{P}{12} - R = -69\right)$	A1	in P or F_1
	Equation of motion up the slope	M1	Second equation. Condone sin/cos confusion. Signs consistent with first equation and change in direction of motion
	$F_2 - 450g \times \frac{1}{15} - R = 450 \times -0.5$ $\left(\frac{P}{6} - 30g - R = -225\right) \left(\frac{P}{6} - R = 69\right)$	A1	Correct unsimplified equation in P or F_2
	$F_1 = \frac{P}{12}$ or $F_2 = \frac{P}{6} \left(= \frac{2P}{12} \right)$	M1	Use of $P = Fv$ at least once
	Solve for <i>P</i>	DM1	Dependent on all previous M marks
	$\left(R = \frac{P}{8}\right) P = 1660 \text{ or } P = 1700$	A1	3 sf or 2 sf (follows use of 9.8) Allow 1.66 kW but not 1.66
		(8)	
		[8]	
		<u> </u>	

$0 = 7t^{\frac{1}{2}}(t^{2} - 5t + 4)$ $t = 1 \text{ and } t = 4$ A1 (3)	Set $v = 0$ and solve for <i>t</i> Dependent on first M1
(3)	Correct solution only
3b $s = x_1 - x_0 + x_4 - x_1 $ M1	Correct strategy to find distance for their value(s) of t in [0,4] Allow M1 if there is no abance of direction in the
	change of direction in the interval
$= \left \frac{20}{3} - 0 \right + \left -\frac{128}{3} - \frac{20}{3} \right $ A1ft	Correct unsimplified expression for their distance (provided there was a change in direction in [0, 4]) Clearly using x(4) + 2x(1) but x(4) miscalculated so correct combined expression never seen. M1 only
= 56 A1	Correct solution only
(3)	
$\begin{array}{c} 3c \\ \text{Use of } a = \frac{\mathrm{d}v}{\mathrm{d}t} \end{array} \qquad $	Recognisable attempt to differentiate
^{3c} Use of $a = \frac{dv}{dt}$ M1 $a = \frac{35}{2} \times 4^{\frac{3}{2}} - \frac{105}{2} \times 4^{\frac{1}{2}} + 14 \times 4^{-\frac{1}{2}}$ M1	Substitute $t = 4$ in their <i>a</i> and simplify
= 42 A1	Correct solution only
(3)	
[9]	

4	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$	M1	As a single vector equation or two separate equations.
	$c\binom{-1}{2} = \frac{3}{4}\mathbf{v} - \binom{3}{0}$	A1	Any equivalent substituted form
	$\left(\mathbf{v} = \frac{4}{3} \begin{pmatrix} 3-c\\2c \end{pmatrix}\right)$		
	Use of Pythagoras	M1	
	$64 = \frac{16}{9} \left(\left(3 - c \right)^2 + 4c^2 \right)$	A1	Correct unsimplified equation in c or a component of v .
			$(5a^2 - 32a = 0 \text{ or } 5b^2 - 16b - 192 = 0)$
	Simplify to 3 term quadratic and solve for <i>c</i>	M1	$5c^2 - 6c - 27 = 0$
	$c = 3$ or $c = -\frac{9}{5}(-1.8)$	A1	Correct only
		(6)	
4 Alt	6	M1	Form vector triangle. Dimensionally correct
	$\sqrt{5c}$		Three correct lengths and $ \cos \theta = \frac{1}{\sqrt{5}}$ seen or implied
	Use of cosine rule	M1	
	$36 = 9 + 5c^2 - 2 \times 3\sqrt{5}c\cos\theta$	A1	Correct unsimplified equation in <i>c</i> with $\cos \theta$ or their $\cos \theta$
	Rearrange as 3 term quadratic and solve for <i>c</i> .	M1	$5c^2 - 6c - 27 = 0$
	$c = 3$ or $c = -\frac{9}{5}(-1.8)$	A1	Correct only
		(6)	
		[6]	
		+	
		+	

5a		1	
	α C 2.5 m B B A		
	Moments about <i>B</i> :	M1	Dimensionally correct Condone sin/cos confusion and errors in angles OR: Correct moments equation and resolution Resolving where required
	$T \times 2.5 \sin \alpha = 70 \times 1.25 \sin 2\alpha$	A1	Unsimplified equation in α
	Or $T \times 2.5 \sin \alpha = 70 \times 2 \sin \alpha$	AI	with at most one error
	Or use similar triangles $T \times \frac{3}{2} = 70 \times \frac{6}{5}$	A1	Correct unsimplified equation in α
	$T = 70 \times \frac{4}{5} = 56(N) *$	A1*	Obtain given answer from correct exact working and no errors seen
		(4)	
5b	Resolve horizontally:	M1	First equation
50	· · · ·		*
	$H = T \sin \alpha \left(= 33.6(N)\right)$	Alft	Correct unsimplified equation
	Resolve vertically $V + T \cos \alpha = 70$ $(V = 25.2 \text{ (NJ)})$	M1	Second equation
	$V + T\cos\alpha = 70 (V = 25.2(N))$	Alft	Correct unsimplified equation
	$V = \mu H$	M1	Use of $F = \mu R$ with their V, H
	$\mu = \frac{3}{4}$	A1	Correct only (no subst for <i>g</i> required)
<u></u>		(6)	
5balt	Resolve parallel to the rod: $H \sin 2\alpha + 70 \cos 2\alpha = 56 \cos \alpha + V \cos 2\alpha$	M1	
		Alft	(24H - 7V = 630)
	Resolve perpendicular to the rod:	M1	
	$70\sin 2\alpha = 56\sin \alpha + V\sin 2\alpha + H\cos 2\alpha$	Alft	(24V + 7H = 840)
	$V = \mu H$	M1	Use of $F = \mu R$ with their V, H
	$\mu = \frac{3}{4}$	A1	Correct only (no subst for <i>g</i> required)
		(6)	
		[10]	

6a			
	$\rightarrow x y \leftarrow$		
	$ \left(\begin{array}{c} A\\ 2m \end{array}\right) \left(\begin{array}{c} B\\ 3m \end{array}\right) $		
	$v v v \underset{vf }{} v$		
	5mv = 2m(v - (-x))	M1	Use of $I = mv - mu$
	$x = \frac{3v}{2}$	A1	Seen or implied
	5mv = 3m(v - (-y)) or $2mx - 3my = 3mv - 2mv$	M1	Use of $I = mv - mu$ or use of CLM
	$y = \frac{2v}{3}$	A1	Seen or implied
	$2v = e\left(\frac{3v}{2} + \frac{2v}{3}\right)$	M1	Correct use of impact law (not necessarily with values in terms of v) Allow $v - v$ on LHS
	$e = \frac{12}{13}$	A1	0.92 or better
		(6)	
6b	Speed of <i>B</i> after collision with wall = vf	D1	Soon on implied
00	Speed of <i>B</i> after consisting with wall $-V_j$	B1	Seen or implied Use KE to form an equation in
	$2 \times \frac{1}{2} \times 3m \left(y^{2} - \left(vf \right)^{2} \right) = \frac{1}{2} \times 2m \left(x^{2} - v^{2} \right)$	M1	<i>f</i> . Condone use of change in KE rather than loss Condone 2 on wrong side
	$3\left(\frac{4}{9}-f^2\right) = \left(\frac{9}{4}-1\right)$	A1	Correct unsimplified equation for f
	$\left(f^2 = \frac{1}{36}\right) f = \frac{1}{6}$	A1	cao NB: $\frac{\sqrt{31}}{6}$ comes from
		(4)	inconsistent subtraction.
		(4) [10]	

$\begin{vmatrix} 7a \\ Use of \frac{2a \times \frac{1}{2}}{3 \times \frac{\pi}{6}} \left(= \frac{2a}{\pi} \right) \\ B1 \end{vmatrix}$	Seen or implied
Moments about <i>EC</i> : M1	Dimensionally correct Condone use of a parallel axis
$ad \times \frac{d}{2} = \frac{1}{6}\pi a^2 \times \frac{2a}{\pi} \times \sin\frac{\pi}{6}$ A1	Correct unsimplified equation
$\Rightarrow \left(d^2 = \frac{a^2}{3} \right) a = \sqrt{3}d * \qquad \qquad$	* Obtain given answer from correct working
	(4)
7b Mass ratios $\frac{a^2}{\sqrt{3}}:\frac{\pi a^2}{6}:\frac{a^2}{\sqrt{3}}+\frac{\pi a^2}{6}$ B1	Or equivalent. Seen or implied
Moments about <i>BC</i> M1	Dimensionally correct Condone use of a parallel axis
$\frac{1}{\sqrt{3}} \times \frac{a}{2} + \frac{\pi}{6} \times \frac{2a}{\pi} \times \frac{\sqrt{3}}{2} = \left(\frac{1}{\sqrt{3}} + \frac{\pi}{6}\right) y \qquad A1$	ft Correct unsimplified. Follow their $\frac{2a}{\pi}$
Distance from $BC = y = \frac{6a}{6 + \sqrt{3}\pi}$ A1	Or equivalent $\left(y = \frac{6d}{2\sqrt{3} + \pi}\right)$
Use of trig to find a relevant angle M1	
$\tan \beta^{\rm C} = \frac{6}{6 + \sqrt{3}\pi} \times \sqrt{3} \qquad \left(\frac{\overline{y}}{d}\right) \qquad \text{A1}$	Or equivalent correct ft unsimplified equation for the required angle
$\beta = 0.737$ (0.74) A1	42.2° implies correct method
	(7)
	11
[1	.1]

8a	Conservation of energy	M1	Need all three terms and dimensionally correct. Condone sign errors.
	$\frac{\frac{1}{2}m \times 10^2 + mgh = \frac{1}{2}m \times 18^2}{h = 11.4 (11)}$	A1	Correct unsimplified equation
	h = 11.4 (11)	A1	3 sf or 2 sf only $\left(\operatorname{not} \frac{80}{7}\right)$
		(3)	
8b	Vertical distance	M1	Complete method using <i>suvat</i> to find angle of projection
	$10\sin\alpha \times 2.5 - \frac{1}{2}g \times 2.5^2 = -11.4$	A1ft	Follow their <i>h</i>
	$\alpha = 50.2^{\circ}$ or $10 \sin \alpha = v_v = 7.7678$	A1	50° or better (50.1618) Accept 50.3° from11.4 Seen or implied Might see $\sin \alpha = \frac{43}{56}$ or $v_V = \frac{215}{28}$
	Horizontal distance = $10 \cos \alpha \times 2.5$ or $\sqrt{100 - {v_V}^2} \times 2.5$	M1	
	=16.0 (16)(m)	A1	3 sf or 2 sf only
		(5)	
8c	Using energy: $\frac{1}{2}m \times 64 + mgs = \frac{1}{2}m \times 100$	M1	Complete method to find height above A
-	<i>s</i> = 1.8367	A1	1.8 or better
	Use of suvat to form equation in <i>t</i>	M1	
	$1.84 = 10\sin 50.2 \times t - 4.9t^2$	A1	Correct unsimplified equation
	Solve for <i>t</i> and find difference between roots	DM1	Complete method to find the required time Dependent on 2 previous M marks
-	T = 0.98 or 0.978	A1	2 sf or 3 sf
		(6)	
8c alt	Use of Pythagoras	M1	Complete method to find vertical component of speed
	Vertical speed $\sqrt{64 - (10\cos\alpha)^2} = 4.8$	A1	Awrt 4.8 or better
	Use of $10\sin\alpha - gt = \pm v$ to find t	M1	
	$\begin{cases} 10\sin 50.2^\circ - gt_1 = 4.8\\ 10\sin 50.2 - gt_2 = -4.8 \end{cases}$	A1	Correct unsimplified equations Could also find time to top
	$T = t_2 - t_1 = 1.27 0.29$	DM1	Complete method to find the required time Dependent on 2 previous M marks
	= 0.98 or 0.978	A1	Final answer. 2 sf or 3 sf
		(6)	
8calt	Use of Pythagoras to form quadratic in t	M1	
	$(10\sin\theta - gt)^2 + (10\cos\theta)^2 = 64$	A1	

Simplify and substitute for trig	M1	
$36 + 9.8^2 t^2 - 150.5t = 0$	A1	
$T = t_2 - t_1 = 1.27 0.29$	DM1	Complete method to find the required time Dependent on 2 previous M marks
= 0.98 or 0.978	A1	Final answer. 2 sf or 3 sf
	[14]	