Question	Solution	Marks	Notes
Number 1.	$\mathbf{I} = 2[\lambda \mathbf{i} + \lambda \mathbf{j} - 5\mathbf{i} - 3\mathbf{j}]$	M1	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$
	$= 2(\lambda - 5)\mathbf{i} + 2(\lambda - 3)\mathbf{j}$	A1	Any equivalent form
	$ I = \sqrt{40} \Longrightarrow (\lambda - 5)^2 + (\lambda - 3)^2 = 10$	M1	Correct use of Pythagoras and their impulse to form an equation in λ
	$\lambda^2 - 8\lambda + 12 = 0 \Longrightarrow \lambda = 2 \text{ or } \lambda = 6$	DM1	Solve to find both values for λ . Dependent on the 2 preceding M marks
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	And no others
	(a = -6, b = -2 or a = 2, b = 6)		
		(5)	
	Alternative working:		
	$\mathbf{I}(=a\mathbf{i}+b\mathbf{j})=2(\mathbf{v}-(5\mathbf{i}+3\mathbf{j}))$	M1A1	
	$\mathbf{v} = \frac{a+10}{2}\mathbf{i} + \frac{b+6}{2}\mathbf{j} \implies (\Rightarrow a+10 = b+6)$		
	$\frac{2}{a^2 + b^2} = 40 \implies b^2 - 4b - 12 = 0$		Correct use of Pythagoras
	or $a^2 + 4a - 12 = 0$	M1	and impulse to form an equation in <i>a</i> or <i>b</i> Any equivalent form
	$b^2 - 4b - 12 = 0 \implies b = 6 \text{ or } b = -2$	DM1	-
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	Or simplified equivalent
		[5]	

Question Number	Solution	Marks	Notes
2	Driving force $=\frac{3P}{12}$	B1	Use of $P = Fv$ Allow for $\frac{P}{12}$ in second equation if not awarded here
	Motion up the hill $F - R - W \sin \theta = 0$	M1	Need all terms. Condone sign errors and sin/cos confusion.
	$\frac{3P}{12} - R - \frac{9000}{15} = 0$ $\left(\frac{3P}{12} - R = 600\right)$	A1	Correct substituted equation Any equivalent form
	Motion down the hill $F + W \sin \theta - R = \frac{9000}{9.8} \times \frac{9.8}{20}$	M1	Need all terms. Condone sign errors and sin/cos confusion.
	$\frac{P}{12} + \frac{9000}{15} - R = 450$ $\left(\frac{P}{12} - R = -150\right)$	A1 A1	Substituted equation with at most one error. Any equivalent form. Correct substituted equation. Any equivalent form.
	Solve for <i>P</i> or <i>R</i>	DM1	Dependent on both preceding M marks
	$\left(\frac{2P}{12} = 750\right) \Longrightarrow P = 4500$	A1	One correct
	R = 525 (530)	A1	Both correct
		(9)	
SC1	Misread mass = 9000kg Gives equations $\frac{P}{4} = R + 5880$ $\frac{P}{12} = R - 1470$ Solutions: $P = 44100, R = 5145$		B1 M1A0 M1A1ftA0 M1A1ftA1ft Total 7/9
SC2	Use of mass = weight = 9000 Gives equations $\frac{P}{4} = R + 600$ $\frac{P}{12} = R + 3810$ Solutions: $P = -19260, R = -5415$		B1 M1A1 M1A1A0 M1A0A0 Total 6/9
		[9]	

Question	Solution	Marks	Notes				
3							
	$\uparrow \frac{3}{5}s$						
	S B B						
	R						
	25g						
	$A \longrightarrow \frac{4}{\epsilon R}$						
	5						
	Use of $F = \mu R$	B1	At least once				
	Resolve horizontally	M1	Allow with their horizontal friction				
	$S = \frac{4}{5}R \left(S = F_A\right)$	A1	Correct unsimplified equation				
	Resolve vertically	M1	Allow with their vertical friction				
	$\frac{3}{5}S + R = 25g \qquad F_B + R = 25g$						
		A1	Correct unsimplified equation				
	$\left(\frac{3}{5}S + \frac{5}{4}S = 25g, S = \frac{500}{37}g\right)$						
			A				
	Moments equation	M1	Any moments equation. Need all terms & dimensionally correct				
	$M(A): 25g \times 1.5 \cos \theta = S \times 3 \sin \theta + \frac{3}{5}S \times 3 \cos \theta$						
	5						
	$\left(25g\cos\theta - \frac{6}{5}S\cos\theta = 2S\sin\theta\right)$	A1	Correct unsimplified equation				
			X X				
	$M(B): R \times 3\cos\theta = 25g \times 1.5\cos\theta + \frac{4}{5}R \times 3\sin\theta$						
	M1A1 for first equation, M1A1 for second equation		· · · · · · · · · · · · · · · · · · ·				
	order in which they appear rather than as listed on the mark scheme). If there are more than 3 equations, mark the 3 used or the best 3 if they go no further.						
	Can also be solved using one resolution and two moments equations.						
	Friction acting in the wrong direction scores A0.						
	$\tan \theta = \left(\frac{25g - \frac{6}{5}S}{2S} = \right) \frac{25 - \frac{600}{37}}{\frac{1000}{37}}$		Substitute to form equation in $\tan \theta$ only				
	$ \tan \theta = \frac{-5}{-28} = \frac{-37}{-1000} $	DM1	Condone in decimals				
	$\frac{25}{27}$		Dependent on M marks for the				
			equations				
	$=\frac{325}{1000}\left(=\frac{13}{40}\right)$	A1	Or exact equivalent (0.325)				
		(9)					
SC	It is possible to solve by resolving horizontally or		M1A1 for a correct resolution				
	vertically and taking moments about the centre:		M2A2 for a complete sets of				
	$1.5\cos\theta \times R = 1.5\cos\theta \times \frac{3}{5}S$		equations to solve				
	5						
	$+1.5\sin\theta \times S + 1.5\sin\theta \times \frac{4}{R}$						
	$+1.5\sin\theta \times S + 1.5\sin\theta \times \frac{4}{5}R$	[0]					
		[9]					

Question Number	Solution					Marks	Notes
4a		ABCD	PQRV	RSTU	L		
	Mass						
	ratio	64	4	16	44	B1	Correct mass ratios for their split
	c of m from AD	4 <i>a</i>	2 <i>a</i>	5 <i>a</i>	(<i>d</i>)	B1	Correct distances from vertical axis for their split
	$\mathbf{M}(AD)$					M1	Must be multiples of <i>a</i>
	M(AD)					IVII	Moments about <i>AD</i> or a parallel axis. Need all terms and
	$64 \times 4a$	$(A \cdots A = A \cdots 2 = 1) \cdots 5 = A A A$					dimensionally consistent. Correct unsimplified equation
	$64 \times 4a - 4 \times 2a - 16 \times 5a = 44d$					A1	Accept as part of a vector equation
		58 42	2			A1*	Obtain given answer from correct
	$\Rightarrow d = \frac{16}{4}$	$\frac{a}{4} = \frac{1}{11}$	-a *				working
						(5)	
4b	C of M of		midpt of	AC		B1	Seen or implied
	M(Mid pt	AB)				M1	Use of moments to form equation in <i>k</i> .
	(, 42)		116			A1	Correct unsimplified equation.
	$\left(4-\frac{42}{11}\right)$	aM = 4c	ikM				Allow with <i>a</i> not seen
	, 1					A1	0.05 or better (0.0454545)
	$k = \frac{1}{22}$						Allow with <i>a</i> not seen
						(4)	
4b	C of M of	L lies at	midpt of	AC		B1	Seen or implied by use of $\overline{x} = \overline{y}$ or
alt							$\tan 45^\circ = 1$
	Find \overline{x} are	nd \overline{y} for	system			M1	
	From AB: $\frac{42}{11}Ma + 8akM = (1+k)M\overline{y}$ From BC: $\frac{46}{11}aM = (1+k)M\overline{x}$						Correct unsimplified equations in \overline{x} and \overline{y} Allow with <i>a</i> not seen
	$\overline{x} = \overline{y} \Longrightarrow$	$\frac{42}{11} + 8k$	$=\frac{46}{11}$	$k = \frac{1}{22}$		A1	Allow with <i>a</i> not seen
41-	C C			10		D1	
4b alt	C of M of	L lies at	midpt of	AC		B1 M1	Seen or implied in moments equation
	If G is c of m of L then $\tan ABG = \frac{42}{46}$ and take						Complete method for moments about <i>B</i>
	moments about B $8a \sin 45^{\circ} \times kM$					A1	Correct unsimplified equation in k
						AI	· · ·
	$=\frac{Ma\sqrt{46^{2}+42^{2}}}{11}\sin(45^{\circ}-ABG)$						Allow with <i>a</i> not seen
			$\Rightarrow k =$	$=\frac{1}{22}$		A1	Allow with <i>a</i> not seen
41	0.01.1	7 1	• 1 • • •	10		D 1	
4b alt	C of M of	L lies at	midpt of	AC		B1	Seen or implied in moments equation

	Take moments about the centre of ABCD	M1	
	$M \times \frac{2\sqrt{2}}{11}a = kM \times 4\sqrt{2}a$	A1	Correct unsimplified equation in k Allow with a not seen
	$\Rightarrow k = \frac{1}{22}$	A1	Allow with <i>a</i> not seen
		[9]	
Question Number	Solution	Marks	Notes
5a	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate to obtain a – powers going down
	$= (6t-9)\mathbf{i} + (2t+1)\mathbf{j}$	A1	differentiation correct
	$=9i+7j (m s^{-2})$	A1	ISW if go on to find a
		(3)	
5b	Instantaneous rest \Rightarrow v = 0 i + 0 j \Rightarrow 3(t-1)(t-2) = 0 and (t-2)(t+3) = 0	M1	Set $\mathbf{v} = 0$ and solve for t (Need both components equal to zero)
	$\Rightarrow t = 2$	A1	
	$\mathbf{r} = \int \mathbf{v} dt$	M1	Integrate to obtain \mathbf{r} – powers going up. Condone if no constant of integration seen.
	$= \left(t^{3} - \frac{9}{2}t^{2} + 6t\right)\mathbf{i} + \left(\frac{1}{3}t^{3} + \frac{1}{2}t^{2} - 6t\right)\mathbf{j}$	A1 A1	At most one error Correct integration Allow column vector. Allow A1A0 for correct integration and non-zero constants(s) of integration
	$= 2\mathbf{i} - \frac{22}{3}\mathbf{j} , \text{ distance} = \sqrt{2^2 + \left(\frac{22}{3}\right)^2}$	DM1	Correct strategy to find the distance, i.e. substitute their value for <i>t</i> and use Pythagoras Dependent on the two preceding M marks
	$=\frac{2\sqrt{130}}{3}=7.60$ (m)	A1	7.6 or better from correct work
		(7)	
		[10]	

Question Number	Solution	Marks	Notes
6a	$R = 6g\cos\alpha$	B1	Correct normal reaction
	Work done = $15 \times 0.25 \times R$	M1	Correct method with their <i>R</i>
	= 204 (J)	A1	Or 200(J) Accept 21g or better. (20.7692g) Not $\frac{2646}{13}$
		(3)	
6b	NB The question specifies that the work-energy <i>suvat</i> equations are not accepted.	gy principle sho	ould be used, so solutions based on
	Initial KE – GPE lost – WD = final KE	M1	Use of work-energy to form equation in v. Dimensionally correct. Ignore sign errors. Allow WD or their WD
	$\frac{1}{2} \times 6 \times 14^{2} - 6g \times 15 \times \frac{5}{13} - 6g \times 15 \times \frac{3}{13}$ $= \frac{1}{2} \times 6v^{2}$ $(2 + 10c + 450g + 270g + 2c^{2})$	A1ft A1ft	Unsimplified equation with at most one error Correct unsimplified equation Follow their WD
	$\left(3 \times 196 - \frac{450g}{13} - \frac{270g}{13} = 3v^2\right)$		
	v = 3.88 (3.9)	A1	Max 3 sf
	Work-energy equation	M1	Complete method using work- energy to form equation in <i>w</i> . Dimensionally correct. Ignore sign errors.
	$\frac{1}{2} \times 6 \times 14^2 - 6g \times 15 \times \frac{3}{13} = \frac{1}{2} \times 6w^2$ or $\frac{1}{2}mw^2 = \frac{1}{2}mv^2 + mg \times \frac{15 \times 5}{13}$	A1ft	Correct unsimplified equation Follow their WD or their v
	w = 11.3 (11)	A1	Max 3 sf
		(7)	
		[10]	

Question	Solution	Marks	Notes
Number 7			
/			
	N		
	$\longrightarrow 2u \longrightarrow u$		
	\cap \cap		
	$\begin{pmatrix} A \\ 3m \end{pmatrix} \begin{pmatrix} B \\ m \end{pmatrix}$		
	3 <i>m m</i>		
	$\longrightarrow v \longrightarrow w$		
	v <		
7a	KE gain = final KE – initial KE	M1	KE equation for <i>B</i> .
			Allow for change in KE
	$48 m^2 - 1 m^2 - 1 m^2$	A1	Correct unsimplified equation to
	$\frac{1}{25}mu = \frac{1}{2}mw - \frac{1}{2}mu$		find w
	(2, 121, 2, 11)		
	$\frac{48}{25}mu^{2} = \frac{1}{2}mw^{2} - \frac{1}{2}mu^{2}$ $\left(w^{2} = \frac{121}{25}u^{2}, w = \frac{11}{5}u\right)$		
	$CLM: 3m \times 2u + mu = 3mv + mw$	M1	All terms required. Condone sign
	$OLIVI: Sht \times 2u + htu = Sht v + htu$		errors
	$\begin{pmatrix} - & - & 11 \end{pmatrix} \begin{pmatrix} - & 8 \end{pmatrix}$	A1	Correct unsimplified equation in v
	$\left(7mu = 3mv + \frac{11}{5}mu\right)\left(v = \frac{8}{5}u\right)$		and w or their w
		M1	Ugod compativ
	Impact law:	M1 A1	Used correctly Correct unsimplified equation in <i>v</i>
	w - v = e(2u - u)	AI	and w or their v and w
	Solve for <i>e</i>	DM1	Dependent on the preceding M
			marks
	3 3	A1	
	$\frac{3}{5}u = eu, e = \frac{3}{5}$		
		(8)	
7b	Impact law: $fw = v$	M1	Condone sign error
	× · ·		_
	6 8	A1	0.73 or better
	$f = \frac{8}{11}$		Final answer must be positive
		(2)	
		[10]	

Question Number	Solution	Marks	Notes
8a	Horizontal component: $p = 8$	B1	
	Vertical component: $-12 = q - 3g$	M1	Complete method to find <i>q</i> using <i>suvat</i> . Condone sign errors.
	<i>q</i> =17.4	A1	17 or better
	Speed = $\sqrt{8^2 + 17.4^2}$	M1	Use of Pythagoras to find speed using their velocity. Independent M mark
	=19.2 (19)(ms ⁻¹)	A1	3 sf or 2 sf
		(5)	
01-	Use of Dethe serves to find souther learning and	M1	
8b	Use of Pythagoras to find vertical component vertical component $= \pm 6$	M1 A1	Seen or implied Accept without +/-
	-6 = 6 - 9.8T	DM1	Complete method using <i>suvat</i> to find required time Dependent on the previous M1
	T = 1.22 (1.2)	A1	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8b alt	Use <i>suvat</i> and Pythagoras to form an equation in <i>t</i>	M1	Or an inequality
	$8^2 + (17.4 - gt)^2 = 100$	A1	Correct unsimplified equation for <i>t</i> Accept inequality
	Solve for <i>T</i>	DM1	Complete method to obtain <i>T</i> Dependent on the previous M1
	T = 1.22 (1.2)	Al	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8c	Velocity perpendicular \Rightarrow vertical component $=\frac{2}{3} \times 8$	M1	Complete method to find vertical component of velocity at <i>B</i>
	$=\frac{16}{3}$	A1	
	$(-12)^{2} = \left(\frac{16}{3}\right)^{2} - 2g(-h)$	DM1	Complete method to find the required vertical distance using their vertical component of the velocity Dependent on the previous M1
	h = 5.90 (5.9) (m)	A1	Max 3 sf
		(4)	
8c alt	$\binom{8}{17.4 - gt} \cdot \binom{8}{-12} = 0 \text{ and time} = 3 - t$	M1	Complete method to find the time from B to A
	Time $= 3 - 1.23 = 1.768$	A1	
	Time = $3 - 1.23 = 1.768$ $s = vt - \frac{1}{2}gt^2 = 12t - 4.9t^2$	DM1	Complete method to find the required vertical distance using their time Dependent on the previous M1
	s = 5.9 (m)	A1	Max 3 sf