FP2_2020_10_MS	2
FP2_2021_01_MS	13
FP2_2021_06_MS	27
FP2_2021_10_MS	40
FP2_2022_01_MS	49
FP2_2022_06_MS	63
FP2_2023_01_MS	75
FP2_2023_06_MS	95
FP2_2024_01_MS	108

IAL FP2 Mark Scheme

Page 1 of 123

Question Number	Scheme	Marks
1(a)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\sin x$	M1M1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2\sin x - 3\frac{\mathrm{d}y}{\mathrm{d}x} - 3x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	A1 (3)
(b)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -3 \times 5 = -15$	B1 (1)
(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -3 \times 0 \times 5 + 2 = 2$	B1
	$y = 2 + 5x + x^2 - \frac{5}{2}x^3$	M1A1 (3)
		[/]
(a) M1	Accept the dashed notation throughout this question. Differentiate $3x \frac{dy}{dx}$ with respect to x. The product rule must be used for $x \frac{dy}{dx}$	with at least
M1	one term correct Differentiate $\frac{d^2 y}{dx^2}$ and $2\cos x$. $\frac{d^2 y}{dx^2} \rightarrow \frac{d^3 y}{dx^3}$ $2\cos x \rightarrow \pm 2\sin x$	
A1	$\frac{d^3 y}{dx^3} = -3\left(x\frac{d^2 y}{dx^2} + \frac{dy}{dx}\right) - 2\sin x$. Give A0 if not rearranged to have $\frac{d^3 y}{dx^3} = \dots$	
(b) B1	$\frac{d^3y}{dx^3} = -15$ provided 3 terms in result in (a)	
(c) B1	$\frac{d^2 y}{dx^2} = 2$ can be implied by a correct x^2 term in the expansion	
M1	Use of a correct Taylor expansion with their values for $\frac{d^3y}{dx^3}$ and $\frac{d^2y}{dx^2}$ 2! or	£ 2, 3! or 6.
A1	$y = 2 + 5x + x^2 - \frac{5}{2}x^3$ Must include $y = \dots$ or $f(x) = \dots$ provided $f(x)$ has been somewhere in the work.	defined to be y

Page 2 of 123

Question Number	Scheme	Marks
2 (a)	3r+1 $-A + B + C$	
	r(r-1)(r+1) r $r-1$ $r+1$	
	3r+1 1 2 1	
	$\frac{1}{r(r-1)(r+1)} - \frac{1}{r} + \frac{1}{r-1} - \frac{1}{r+1}$	MIAI (2)
(b)	2 1 1	
	$\frac{1}{1} \frac{2}{2} \frac{3}{3} \frac{2}{3} \frac{1}{1} \frac{1}{1}$	
	2 1 1 n-3 n-2 n-1	
	$2 \ 3 \ 4 \ \underline{2 \ 1 \ 1} \ \underline{1}$	M1
	$\frac{2}{n-1} - \frac{1}{n-1} = \frac{n-2}{n-1} - \frac{n-1}{n}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{2}{4} - \frac{1}{5} - \frac{1}{6}$ $n-1$ n $n+1$	
	$=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{n}-\frac{1}{n}-\frac{1}{n+1}$	dM1A1
	5 2 1 $5n(n+1)-4(n+1)-2n$ $5n^2-n-4$	M1, A1 cso
	$\frac{1}{2} - \frac{1}{n} - \frac{1}{n+1} = \frac{2n(n+1)}{2n(n+1)}, = \frac{1}{2n(n+1)}$	(5)
(c)	$\frac{20}{2}$ 14	
	$\sum_{2} - \sum_{2}$	
	$5 \times 20^2 - 20 - 4$ $5 \times 14^2 - 14 - 4$	M1
	$-\underbrace{2\times20\times21}_{2\times14\times15}$	1011
	$=\frac{13}{1}$	A1 (2)
	210	[9]
(a)		
M1	Correct method for obtaining the PFs	
Al (b)	Correct PFs	
(0)	Show sufficient terms at both ends (eg 3 at start and 2 at end) to demon	strate the
M1	cancelling. (This can be implied by correct work at the next line)	
	Must be using PFs of the correct form and start at $r = 2$ unless extra ter	ms are ignored
	at next stage. Can be split into $\sum \left(\frac{1}{r-1} - \frac{1}{r}\right) + \sum \left(\frac{1}{r-1} - \frac{1}{r+1}\right)$	
dM1	Extract the non-cancelled terms (min 4 correct terms but $5/2$ counts as	3 correct)
Δ 1	Depends on first M of (b) Correct terms extracted	
	Write terms using the common denominator, numerator need not be sir	nplified. Must
IVI I	start with a min of 3 terms inc terms with denominators n and $(n + 1)$	-
Alcso	Correct answer from correct working	
(C)	Form and use the difference of the 2 summations shown using their res	ult from (b) or
M1	an earlier form seen in (b)	
A1	Correct exact answer, as shown or equivalent	

Question Number	Scheme	Marks
3	$x^{2} + 3x + 10 = 7$	This sketch on its own scores no marks, but it may be seen in the work
	$\frac{1}{x+2} = 7 - x$ $x^{2} + 3x + 10 = 14 + 5x - x^{2}$	M1
	$x^{2} - x - 2 = 0 (x - 2)(x + 1) = 0$ CVs 2, -1 -(x ² + 3x + 10)	dM1 A1A1
	$\frac{1}{x+2} = 7-x$ -x ² -3x-10 = 14 + 5x - x ² 8x = -24 CV - 3	M1 A1
	$x < -3 \qquad -1 < x < 2$	[9]
NB	No algebra implies no marks	
M1 dM1 A1 A1 M1 A1 dddM1 A1 A1	Form a quadratic equation or inequality, no simplification needed Solve the 3TQ any valid method Depends on the first M mark. Either CV Both CVs Change the sign of LHS or RHS and obtain an equation (quadratic or lis simplification needed) Correct CV from solving the linear equation x < their smallest CV and x between their other 2 CVs All M marks a Either inequality correct Both inequalities correct "and" between the inequalities is acceptable. If \cap used, deduct an A m	inear, no ibove needed nark.

Question Number	Scheme	Marks
4		
(a)	$ 18\sqrt{3} - 18i = 18\sqrt{(3+1)} = 36$	B1
	$\tan \theta = \frac{-18}{18\sqrt{3}} \qquad \theta = -\frac{\pi}{6}, \qquad 18\sqrt{3} - 18i = 36\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$	M1,A1cao (3)
(b)	$z^{4} = 36\left(\cos-\frac{\pi}{6} + i\sin-\frac{\pi}{6}\right) = 36\left(\cos\left(2k\pi - \frac{\pi}{6}\right) + i\sin\left(2k\pi - \frac{\pi}{6}\right)\right)$	M1
	$z = \sqrt{6} \left(\cos\left(\frac{12k\pi - \pi}{24}\right) + i\sin\left(\frac{12k\pi - \pi}{24}\right) \right)$	M1
	$k = 0 \qquad z_0 = \sqrt{6} \left(\cos\left(\frac{-\pi}{24}\right) + i\sin\left(\frac{-\pi}{24}\right) \right) = \sqrt{6} e^{i\left(-\frac{\pi}{24}\right)}$	B1
	$k = 1$ $z_1 = \sqrt{6} \left(\cos\left(\frac{11\pi}{24}\right) + i\sin\left(\frac{11\pi}{24}\right) \right) = \sqrt{6}e^{i\frac{11\pi}{24}}$	A1ft
	$k = 2$ $z_2 = \sqrt{6} \left(\cos\left(\frac{23\pi}{24}\right) + i\sin\left(\frac{23\pi}{24}\right) \right) = \sqrt{6}e^{i\frac{23\pi}{24}}$	
	$k = -1 z_3 = \sqrt{6} \left(\cos \left(-\frac{13\pi}{24} \right) + i \sin \left(-\frac{13\pi}{24} \right) \right) = \sqrt{6} e^{i \left(-\frac{13\pi}{24} \right)}$	Alft (5)
		[8]
(a)		
B1	Correct modulus	
M1	Attempt argument using $\tan \theta = \frac{\pm 18}{18\sqrt{3}}$ or other valid method. Can be in	mplied by
	$\theta = \pm \frac{\pi}{6}$	
A1cao (b)	Correct answer in the required form.	
M1	Valid method for generating at least 2 roots, rotation through $\frac{\pi}{2}$ accept	ted
M1	Apply de Moivre or use the rotation method	
B1	Any one correct root	
A1ft	Second root in required form	
A1ft	An 4 roots in the required form	
NB	Follow through their $\sqrt{30}$ but 36 not acceptable. Argument in degrees – M1M1B1A0A0 (ie treat as mis-read)	
	Incorrect argument: BUAIIIAIII available A server in $r(\cos \theta + i\sin \theta)$ c = 1.1.4 C = 1.4 s	
	Answers in (0000 ± 1000) form – deduct final A marks	

Page 5 of 123

Question Number	Scheme	Marks
5	$w = \frac{z - 3i}{z + 2i}$	
	$w(z+2i) = z-3i$ $z = \frac{i(2w+3)}{1-w}$	M1
	$\left z\right = 1 \left \frac{i(2w+3)}{1-w}\right = 1$	dM1
	$\left i(2w+3)\right = \left 1-w\right $	
	$w = u + iv$ $(2u + 3)^{2} + 4v^{2} = (1 - u)^{2} + v^{2}$	ddM1
	$4u^2 + 12u + 9 + 4v^2 = 1 - 2u + u^2 + v^2$	
	$3u^2 + 3v^2 + 14u + 8 = 0$	dddM1
	$u^2 + v^2 + \frac{14}{3}u + \frac{8}{3} = 0$	A1
	$\left(u+\frac{7}{3}\right)^2 + v^2 = -\frac{8}{3} + \frac{49}{9} = \frac{25}{9}$	
(i)	Centre $\left(-\frac{7}{3},0\right)$	A1
(ii)	Radius $\frac{5}{3}$	A1 (7)
		[7]
(a) M1	re-arrange to $z = \dots$	
dM1	dep (on first M1) using $ z = 1$ with their previous result	
ddM1	dep (on both previous M marks) use $w = u + iv$ (or any other pair of least and find the moduli (or square of it)	etters inc (x, y))
dddM1	dep (on all previous M marks) re-arrange to the form of the equation of a circle (same	
A1	for a correct equation in u and v with coeffs of u^2 and v^2 both 1	
A1	Correct centre, must be in coordinate brackets. Completion of square n shown.	eed not be
A1	Correct radius Centre and radius must come from a correct circle equation for the	e A marks

Question Number	Scheme	Marks
6.	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{(x\cot x + 2)}{x}y = \frac{4\sin x}{x^2}$	B1
	$IF = e^{\int \frac{(x \cot x + 2)}{x} dx}$	M1
	$= e^{(\ln \sin x + 2\ln x)}$	A1
	$=x^2 \sin x$	A1
	$\frac{d}{dx}$ (their IF × y) = their IF × " $\frac{4\sin x}{x^2}$ "	M1
	$yx^{2}\sin x = \int 4\sin^{2} x dx = 4\int \frac{1-\cos 2x}{2} dx = 4\left(\frac{x}{2} - \frac{1}{4}\sin 2x\right) (+C)$	dM1A1
	$y = \frac{2x - \sin 2x + C}{x^2 \sin x} \text{oe}$	A1cao [8]
B1	Divide through by x^2	
M1	Attempt an IF of the form $e^{\int \frac{k(x \cot x + 2)}{x} dx}$	
A1	$\left(\ln\sin x + 2\ln x\right)$	
A1	Correct IF	1. 1.1
M1	Multiply through by their IF and write LHS in form shown – can be im line. Allow if IF is seen instead of their function provided an IF has bee Allow use of their RHS	en attempted.
dM1	Attempt to integrate $\sin^2 x$, including using $\sin^2 x = \frac{1}{2} (1 \pm \cos 2x) \cos^2 x$	$2x \to k \sin 2x$
	depends on previous M mark	
A1	Correct integration, constant not needed	
Al	Include the constant and treat it correctly. Must have $y =$	

Question Number	Scheme	Marks
7 (a)	$r\sin\theta = 2a\sin\theta + 2a\sin\theta\cos\theta \text{OR} r\sin\theta = 2a\sin\theta + a\sin2\theta$ $\frac{d(r\sin\theta)}{d\theta} = 2a\cos\theta + 2a\cos^2\theta \qquad \qquad \frac{d(r\sin\theta)}{d\theta} = 2a\cos\theta + 2a\cos2\theta$	B1 M1 A1
	$2\cos^{2}\theta + \cos\theta - 1 = 0 \text{terms in any order} (2\cos\theta - 1)(\cos\theta + 1) = 0$	
	$\cos\theta = \frac{1}{2}$ $\theta = \frac{\pi}{3}$ $(\theta = \pi \text{ need not be seen})$	dM1A1
	$r = 2a \times \frac{3}{2} = 3a$	A1 (6)
(b)	Area $=\frac{1}{2}\int r^2 d\theta = \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 4a^2 (1+\cos\theta)^2 d\theta$	
	$=2a^2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(1+2\cos\theta+\cos^2\theta\right)\mathrm{d}\theta$	M1
	$=2a^2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)\mathrm{d}\theta$	M1
	$=2a^{2}\left[\theta+2\sin\theta+\frac{1}{2}\left(\frac{1}{2}\sin 2\theta+\theta\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	dM1A1
	$=2a^{2}\left[\frac{\pi}{3}+\sqrt{3}+\frac{1}{4}\times\frac{\sqrt{3}}{2}+\frac{\pi}{6}-\left(\frac{\pi}{6}+1+\frac{1}{4}\times\frac{\sqrt{3}}{2}+\frac{\pi}{12}\right)\right]$	M1 NB: A1 on e-PEN
	$=2a^2\left(\frac{\pi}{4}+\sqrt{3}-1\right)$	
	Area of $\triangle OAB = \frac{1}{2} \times 3a \times (2 + \sqrt{3})a \times \sin\frac{\pi}{6} \left(= \frac{3}{4}a^2 \left(2 + \sqrt{3} \right) \right)$	
	Shaded area = $2a^2\left(\frac{\pi}{4} + \sqrt{3} - 1\right) - \frac{3}{4}a^2\left(2 + \sqrt{3}\right) = \frac{a^2}{4}\left(2\pi - 14 + 5\sqrt{3}\right)$	M1A1cao (7)
		[13]

Question Number	Scheme	Marks
(a) B1 M1 A1 dM1 A1 A1 A1	Multiply <i>r</i> by $\sin \theta$ Award if not seen explicitly but a correct result following use of double is seen Differentiate $r \sin \theta$ or $r \cos \theta$ (using product rule or using double ang Correct derivative for $r \sin \theta$ Use $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3TQ in $\cos \theta$ and attempt its solution method Correct value for θ Correct <i>r</i>	e angle formula le formula first) i by a valid
(b) M1 M1	Use area $=\frac{1}{2}\int r^2 d\theta$ with $r = 2a + 2a\cos\theta$, no limits needed, Use a double angle formula to obtain a function ready for integrating (Alt method uses integration by parts – may be seen)	
dM1	Attempt the integration $\cos 2\theta \rightarrow \frac{1}{k} \sin 2\theta \ k = \pm 2 \text{ or } \pm 1$	
A1	Correct integration,	
M1	Substitute the limits (need not be simplified). Limits $\frac{\pi}{6}$ and their θ from this is $> \frac{\pi}{6}$ NB: A1 on e-PEN Obtain the area of $\triangle OAB$ and subtract from their previous area	om (a) provided
AI	Correct answer	

Question Number	Scheme	Marks
8 (a)	$x = e^{u}$ $\frac{dx}{du} = e^{u}$ or $\frac{du}{dx} = e^{-u}$ or $\frac{dx}{du} = x$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-u} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{e}^{-u} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}u} + \mathrm{e}^{-u} \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-2u} \left(-\frac{\mathrm{d}y}{\mathrm{d}u} + \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \right)$	M1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3x \frac{\mathrm{d}y}{\mathrm{d}x} - 8y = 4\ln x$	
	$e^{2u} \times e^{-2u} \left(-\frac{dy}{du} + \frac{d^2 y}{du^2} \right) + 3e^u \times e^{-u} \frac{dy}{du} - 8y = 4\ln\left(e^u\right)$	dM1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} + 2\frac{\mathrm{d}y}{\mathrm{d}u} - 8y = 4u \qquad \texttt{*}$	A1*cso (6)
B1	$\frac{\mathrm{d}x}{\mathrm{d}u} = \mathrm{e}^{u}$ oe as shown seen explicitly or used	
M1	Obtaining $\frac{dy}{dx}$ using chain rule here or seen later	
M1	Obtaining $\frac{d^2 y}{dx^2}$ using product rule (penalise lack of chain rule by the A	A mark)
A1	Correct expression for $\frac{d^2y}{dx^2}$ any equivalent form	
dM1 A1*cso	Substituting in the equation to eliminate x (u and y only). Depends on to Obtaining the given result from completely correct work	he 2 nd M mark
	ALTERNATIVE 1	
	$x = e^{u}$ $\frac{dx}{du} = e^{u} = x$	B1
	$\frac{dy}{du} = \frac{dy}{dx} \times \frac{dx}{du} = x \frac{dy}{dx}$	M1
	$\frac{d^2 y}{du^2} = 1 \frac{dx}{du} \times \frac{dy}{dx} + x \frac{d^2 y}{dx^2} \times \frac{dx}{du} = x \frac{dy}{dx} + x^2 \frac{d^2 y}{dx^2}$	M1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - \frac{\mathrm{d}y}{\mathrm{d}u}$	
	$\left(\frac{d^2 y}{du^2} - \frac{dy}{du}\right) + 3x \times \frac{1}{x} \frac{dy}{du} - 8y = 4\ln(e^u)$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} + 2\frac{\mathrm{d}y}{\mathrm{d}u} - 8y = 4u \qquad \mathbf{*}$	dM1A1*cso (6)

Page 10 of 123

Question Number	Scheme	Marks
B1	$\frac{\mathrm{d}x}{\mathrm{d}u} = \mathrm{e}^{u}$ oe as shown seen explicitly or used	
M1	Obtaining $\frac{dy}{du}$ using chain rule here or seen later	
M1	Obtaining $\frac{d^2 y}{du^2}$ using product rule (penalise lack of chain rule by the A	A mark)
A1	Correct expression for $\frac{d^2 y}{du^2}$ any equivalent form	
dM1 A1*cso	Substituting in the equation to eliminate x (u and y only). Depends on to Obtaining the given result from completely correct work	he 2 nd M mark
	ALTERNATIVE 2: $u = \ln x \frac{du}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{x} \frac{dy}{du}$ $\frac{d^2 y}{dx^2} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x} \frac{d^2 y}{du^2} \times \frac{du}{dx} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x^2} \frac{d^2 y}{du^2}$ $x^2 \left(-\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x^2} \frac{d^2 y}{du^2} \right) + 3x \times \frac{1}{x} \frac{dy}{du} - 8y = 4u$ $\frac{d^2 y}{du^2} + 2 \frac{dy}{du} - 8y = 4u$	B1 M1 M1A1 M1A1*cso
	Notes as for main scheme	

There are also **other solutions** which will appear, either starting from equation II and obtaining equation I, or mixing letters x, y and u until the final stage. Mark as follows:

- B1as shown in schemes aboveM1obtaining a first derivative with chain ruleM1obtaining a second derivative with product rule
- A1 correct second derivative with 2 or 3 variables present
- **dM1** Either substitute in equation I or substitute in equation II according to method chosen **and** obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)
- A1cso Obtaining the required result from completely correct work

Question Number	Scheme	Marks
(b)	$m^{2} + 2m - 8 = 0$ $(m+4)(m-2) = 0, m = -4, 2$ $CF = Ae^{-4u} + Be^{2u}$ PI: try $y = au + b$ (or $y = cu^{2} + au + b$ different derivatives, $c = 0$)	M1A1 A1
	$\frac{dy}{du} = a \frac{d^2 y}{du^2} = 0$ $0 + 2a - 8(au + b) = 4u$ $a = -\frac{1}{2} b = -\frac{1}{2}$	M1
	$\therefore y = Ae^{-4u} + Be^{2u} - \frac{1}{2}u - \frac{1}{8}$	B1ft (7)
(c)	$y = Ax^{-4} + Bx^2 - \frac{1}{2}\ln x - \frac{1}{8}$	B1 (1) [14]
(b) M1 A1 A1 M1 dM1 A1 B1ft	Writing down the correct aux equation and solving to $m =$ (usual rules) Correct solution $(m = -4, 2)$ Correct CF – can use any (single) variable Using an appropriate PI and finding $\frac{dy}{du}$ and $\frac{d^2y}{du^2}$ Use of $y = \lambda u$ scores M0 Substitute in the equation to obtain values for the unknowns. Depends on the second M1 Correct unknowns two or three (with $c = 0$) A complete solution, follow through their CF and a non-zero PI. Must have $y = a$ function of u Allow recovery of incorrect variables.	
(c) B1	Reverse the substitution to obtain a correct expression for y in terms of x^{-4} or $e^{-4\ln x}$ and x^2 or $e^{2\ln x}$ allowed. Must start $y = \dots$	\hat{x} No ft here

Question Number	Scheme	Marks
1.	$i(1+\sqrt{3}) = \frac{i(1+\sqrt{3}) + pi}{i^2(1+\sqrt{3}) + 3}$ $-i(1+\sqrt{3})^2 + 3i(1+\sqrt{3}) = i(1+\sqrt{3}) + pi$	M1
	$-1 - 2\sqrt{3} - 3 + 3 + 3\sqrt{3} = 1 + \sqrt{3} + p$	dM1
	p = -2	A1 [3]
M1	Substitute $i(1+\sqrt{3})$ for w and z	
dM1 A1	Solve to $p = \dots$ Correct value for p	
	Some solve for <i>p</i> first:	
M1	Obtain an expression for p in terms of w and/or z Substitute $i(1 + \sqrt{3})$ for w and z	
A1	Correct value for p	

Question Number	Scheme	Marks
2 (a)	$\frac{r+2}{r(r+1)} - \frac{r+3}{(r+1)(r+2)} = \frac{(r+2)^2 - r(r+3)}{r(r+1)(r+2)}$	M1
	$=\frac{r^2+4r+4-r^2-3r}{r(r+1)(r+2)}=\frac{r+4}{r(r+1)(r+2)}$	A1* (2)
(b)	$r=1$ $\frac{3}{1\times 2}-\frac{4}{2\times 3}$ $r=n-1$ $\frac{n+1}{(n-1)n}-\frac{n+2}{n(n+1)}$	
	$r = 2 \qquad \frac{4}{2 \times 3} - \frac{5}{3 \times 4} \qquad \qquad r = n \qquad \frac{n+2}{n(n+1)} - \frac{n+3}{(n+1)(n+2)}$	M1
	$r = 3 \qquad \frac{5}{3 \times 4} - \frac{6}{4 \times 5}$	
	$\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)} = \frac{3}{2} - \frac{n+3}{(n+1)(n+2)}$	A1
	$\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)} = \frac{3(n+1)(n+2)-2n-6}{2(n+1)(n+2)} = \frac{n(3n+7)}{2(n+1)(n+2)}$	dM1 A1cao (4)
(a) M1	Attempt a single fraction with the correct denominator (or 2 separate fraction correct common denominator)	ns with the
A1*	Correct result obtained with no errors in the working. Must include LHS as s question or $LHS =$	shown in
(b) M1	Show sufficient terms to demonstrate the cancelling, min 3 at start and 1 at e and 2 at end. Award by implication if the correct 2 remaining terms are seen	nd or 2 at start
A1 dM1	Extract the correct 2 remaining terms Attempt common denominator of the form $k(n+1)(n+2)$	
Alcao	Correct result obtained. No need to show a, b and c explicitly.	

Question Number	Scheme	Marks
3	$x^2 + x - 2 < \frac{1}{2}x + \frac{5}{2}$	
	$2x^2 + x - 9 < 0$	M1
	$CVs x = \frac{-1 \pm \sqrt{73}}{4}$	A1
	$-x^2 - x + 2 < \frac{1}{2}x + \frac{5}{2}$	M1
	$2x^2 + 3x + 1 > 0$ $(2x+1)(x+1) > 0$	M1
	$CVs x = -\frac{1}{2}, -1$	A1
	$\frac{-1 - \sqrt{73}}{4} < x < -1, -\frac{1}{2} < x < \frac{-1 + \sqrt{73}}{4}$	M1A1 [7]
NB M1 A1 M1 M1 A1 M1 A1	No algebra implies no marks The first 5 marks can all be awarded if equations rather than inequalities are shown Obtain and solve a 3TQ (any valid method including calculator) 2 correct CVs Allow decimal equivalents (1.886, -2.386), min 3 sf, rounded or truncated Multiply either side by -1 Obtain and solve a 3TQ (any valid method including calculator) 2 correct CVs Form 2 double inequalities with their CVs. No overlap between these inequalities. Correct inequality signs required here or for final mark Correct inequalities obtained. Values must be exact, but note that 0.5 is exact. Allow "and" but not "∩". May be written in set language with "∪" and round brackets	

Question Number	Scheme	Ма	rks
4 (a)	$y^2 = z^{-1} \implies 2y \frac{dy}{dx} = -\frac{1}{z^2} \frac{dz}{dx}$ or $eg \frac{dy}{dx} = -\frac{1}{2} z^{-\frac{3}{2}} \frac{dz}{dx}$	B1	
	$2y \frac{dy}{dx} + 4y^2 = 6xy^4$ $-\frac{1}{z^2} \frac{dz}{dx} + \frac{4}{z} = \frac{6x}{z^2}$ $\frac{dz}{dx} - 4z = -6x *$	M1 A1 *	(3)
(b)	$IF = e^{\int -4dx} = e^{-4x}$ $e^{-4x} \left(\frac{dz}{dx} - 4z\right) = e^{-4x} \times -6x$	B1	
	$ze^{-x} = -6\int xe^{-x}dx$	M1	
	$= -6\left[-\frac{1}{4}xe^{-4x} + \int\frac{1}{4}e^{-4x}dx\right]$	M1	
	$= -6 \left[-\frac{1}{4} x e^{-4x} - \frac{1}{16} e^{-4x} \right] (+c) \text{oe}$	A1	
	$=\frac{3}{2}xe^{-4x}+\frac{3}{8}e^{-4x}(+c)$		
	$z = \frac{3}{2}x + \frac{3}{8} + ce^{4x} \text{oe}$	A1	(5)
ALT	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4z = -6x$		
	$m-4=0 \Rightarrow m=4 \Rightarrow \text{ CF is } z=Ae^{4x}$	B1	
	PI: $z = \lambda + \mu x$	M1	
	$\frac{\mathrm{d}z}{\mathrm{d}x} = \mu \Longrightarrow \mu - 4(\lambda + \mu x) = -6x$		
	$4\mu = 6 4\lambda = \mu, \implies \mu = \frac{3}{2}, \ \lambda = \frac{3}{8}$	M1,A1	
	$z = \frac{3}{2}x + \frac{3}{8} + Ae^{4x}$	A1	
(c)	$y^{2} = \frac{1}{\frac{3}{2}x + \frac{3}{8} + ce^{4x}} = \frac{8}{(12x + 3 + Ae^{4x})} \text{oe}$	B1ft	(1) [9]

Page 16 of 123

Question Number	Scheme	Marks
(a) B1 M1 A1 *	Correct derivative seen explicitly or used Substitutions made. Only award when an equation in x and z only is reached (i equation I to II) or an equation in x and y is reached (if working II to I) Correct result obtained with no errors in working	f working
(b) B1 M1 M1 A1 A1	Correct IF seen explicitly or used Multiply through by their IF and integrate the LHS. Accept <i>I</i> for e ^{-4x} on LHS of Apply parts in the correct direction to RHS to obtain $Axe^{-4x} + B\int e^{-4x} dx$ with $A = \pm \frac{3}{2}$ and $B = \pm \frac{3}{2}$ Correct integration of RHS, constant not needed Include the constant and treat it correctly. Answer in form $z =$	nly
ALT B1 M1 M1 A1 A1 (c)	Correct CF May not be seen until GS is formed For a PI of the correct form Differentiate their PI, substitute in the equation and extract 2 equations for the Solve the two equations to obtain correct values for the unknowns Correct GS obtained	unknowns
B1ft	Any equivalent to that shown. (no need to change letter for constant if rearrange Must start $y^2 =$ and must include a constant.	ged)

FP2_2021_01_MS

Question Number	Scheme	Marks
5(a)	$-2x\frac{d^{2}y}{dx^{2}} + (2-x^{2})\frac{d^{3}y}{dx^{3}}$	M1
	$+5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 5x \times 2\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2}, = 3\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1, B1
	$\frac{\mathrm{d}^{3} y}{\mathrm{d}x^{3}} \left(2 - x^{2}\right) + \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} \left(10x \frac{\mathrm{d}y}{\mathrm{d}x} - 2x\right) + 5 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} = 3 \frac{\mathrm{d}y}{\mathrm{d}x}$	
	$\frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = \frac{1}{\left(2-x^{2}\right)} \left(2x\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}\left(1-5\frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} + 3\frac{\mathrm{d}y}{\mathrm{d}x}\right) \mathbf{*}$	A1 * (5)
ALT 1	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3y - 5x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}{\left(2 - x^2\right)}$	
	$\frac{d^{3}y}{dx^{3}} = \frac{\left[3\frac{dy}{dx} - 5\left(\frac{dy}{dx}\right)^{2} - 5x \times 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right](2-x^{2}) - \left[3y - 5x\left(\frac{dy}{dx}\right)^{2}\right](-2x)}{(2-x^{2})^{2}}$	M1M1A1
	$\frac{d^{3}y}{dx^{3}} = \frac{\left[3\frac{dy}{dx} - 5\left(\frac{dy}{dx}\right)^{2} - 10x\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right]\left(2 - x^{2}\right) + 2x\left(2 - x^{2}\right)\frac{d^{2}y}{dx^{2}}}{\left(2 - x^{2}\right)^{2}}$	M1 (NB: B1 on ePEN)
	$\frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = \frac{1}{\left(2-x^{2}\right)} \left(2x\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}\left(1-5\frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} + 3\frac{\mathrm{d}y}{\mathrm{d}x}\right) \mathbf{*}$	A1 * (5)

Question Number	Scheme	Marks
ALT 2	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3y}{\left(2-x^2\right)} - \frac{5x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}{\left(2-x^2\right)}$	
	$\frac{d^{3}y}{dx^{3}} = \frac{3\frac{dy}{dx}(2-x^{2})-3y(-2x)}{(2-x^{2})^{2}}$ $-\frac{\left[5\left(\frac{dy}{dx}\right)^{2}+5x\times2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right](2-x^{2})-5x\left(\frac{dy}{dx}\right)^{2}(-2x)}{(2-x^{2})^{2}}$	M1M1A1
	$\frac{d^{3}y}{dx^{3}} = \frac{3\frac{dy}{dx}(2-x^{2}) - \left(\left(2-x^{2}\right)\frac{d^{2}y}{dx^{2}} + 5x\frac{dy}{dx}\right)(-2x)}{\left(2-x^{2}\right)^{2}} - \frac{\left[5\left(\frac{dy}{dx}\right)^{2} + 5x \times 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right](2-x^{2}) - 5x\left(\frac{dy}{dx}\right)^{2}(-2x)}{\left(2-x^{2}\right)^{2}}$	M1(B1 on ePEN)
	$\frac{\mathrm{d}^{3} y}{\mathrm{d}x^{3}} = \frac{1}{\left(2-x^{2}\right)} \left(2x \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} \left(1-5 \frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} + 3 \frac{\mathrm{d}y}{\mathrm{d}x}\right) \mathbf{*}$	A1*
(b)	$x = 0 \implies 2\frac{d^2y}{dx^2} = 9 \frac{d^2y}{dx^2} = \frac{9}{2}$	B1
	$\frac{d^{3}y}{dx^{3}} = \frac{1}{2} \left(-5 \left(\frac{dy}{dx} \right)^{2} + 3 \frac{dy}{dx} \right) = \frac{1}{2} \left(-5 \times \frac{1}{16} + \frac{3}{4} \right) = \frac{7}{32}$	M1
	$y = 3 + \frac{1}{4}x + \frac{9}{2}\frac{x^2}{2!} + \frac{7}{32}\frac{x^3}{3!}$	M1
	$y = 3 + \frac{1}{4}x + \frac{1}{4}x^{2} + \frac{1}{192}x^{3}$	A1 (4)

Question Number	Scheme	Marks
(a)		
M1	Differentiate $(2-x^2)\frac{d^2y}{dx^2}$ using product rule	
M1	Differentiate $5x\left(\frac{dy}{dx}\right)^2$ using product and chain rule	
A1	Correct derivative of $5x\left(\frac{dy}{dx}\right)^2$	
B 1	Correct derivative of 3y	
A1*	Correct result obtained from fully correct working	
ALT 1	Rearrange and use quotient rule $(1-2)^2$	
M1	Use the quotient rule. Denominator must be $(2-x^2)$ and numerator to be the	difference of 2
	terms $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}^2$	
M1	Differentiate $\left[3y - 5x \left(\frac{dy}{dx} \right) \right]$ using product and chain rule	
A1	Fully correct differentiation	
M1	NB: B1 on ePEN Replace 3y with $(2-x^2)\frac{d^2y}{dx^2} + 5x\frac{dy}{dx}$	
A1*	Correct result obtained from fully correct working	
ALT 2	Rearrange, separate into 2 fractions and then use quotient rule	
M1	Use the quotient rule on both fractions. Denominators must be $(2-x^2)^2$ and n	umerator of
	each to be the difference of 2 terms	
M1	Differentiate 3y using the chain rule and differentiate $5x\left(\frac{dy}{dx}\right)^2$ using product	and chain rule
A1	Fully correct differentiation	
M1	NB: B1 on ePEN Replace $3y$ with $(2-x^2)\frac{d^2y}{dx^2} + 5x\frac{dy}{dx}$	
A1*	Correct result obtained from fully correct working	
(b)		
B1	Correct value of $\frac{d^2 y}{dx^2}$	
M1	Use the given result from (a) to obtain a value for $\frac{d^3y}{dx^3}$	
M1 A1	Taylor's series formed using their values for the derivatives (accept 2! or 2 and Correct series, must start (or end) $y =$ but accept $f(x)$ provided $y = f(x)$ define	1 3! or 6) ed somewhere

Question Number	Scheme	Marks
6(a)	$m^2 + 2m + 5 = 0 \implies m = -1 \pm 2i$	M1
	C F: $y = e^{-x} (A \cos 2x + B \sin 2x)$ OR $y = e^{-x} (P e^{i2x} + Q e^{-i2x})$ or $y = P e^{(-1+2i)x} + Q e^{(-1-2i)x}$	A1
	PI: $y = a \cos x + b \sin x$	B1
	$y' = -a\sin x + b\cos x \qquad y'' = -a\cos x - b\sin x$	
	$-a\cos x - b\sin x - 2a\sin x + 2b\cos x + 5a\cos x + 5b\sin x = 6\cos x$	M1
	-b - 2a + 5b = 0 $-a + 2b + 5a = 6$	M1
	$a = \frac{6}{5} b = \frac{3}{5}$	A1
	GS: $y = \text{their CF} + \frac{6}{5}\cos x + \frac{3}{5}\sin x$	Alft (7)
(b)	$x = 0, y = 0 0 = A + \frac{6}{5} \implies A = -\frac{6}{5}$	M1
	$y' = -e^{-x} \left(A \cos 2x + B \sin 2x \right) + e^{-x} \left(-2A \sin 2x + 2B \cos 2x \right)$	M1A1ft
	$-\frac{1}{5}\sin x + \frac{1}{5}\cos x$	
	$x = 0 \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies 0 = +\frac{6}{5} + 2B + \frac{3}{5} \implies B = -\frac{9}{10}$	dM1
	PS: $y = e^{-x} \left(-\frac{6}{5} \cos 2x - \frac{9}{10} \sin 2x \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$	A1 (5)
ALT	$y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$	[12]
	$x = 0$ $y = 0$ $0 = P + Q + \frac{6}{5}$	M1
	$\frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x$	M1A1ft
	$0 = 2iP - 2iQ + \frac{9}{5}$	
	$P+Q = -\frac{6}{5}$ $P-Q = \frac{9}{10}i$	
	$P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10} \mathbf{i} \right) \qquad Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10} \mathbf{i} \right)$	dM1
	PS: $y = \frac{1}{2}e^{-x}\left(-\frac{6}{5} + \frac{9}{10}i\right)e^{2ix} + \frac{1}{2}e^{-x}\left(-\frac{6}{5} - \frac{9}{10}i\right)e^{-2ix} + \frac{6}{5}\cos x + \frac{3}{5}\sin x$	A1 (5)
	I	

Page 21 of 123

Question Number	Scheme	Marks
(a) M1 A1 B1 M1 M1 A1 A1ft	Form and solve the auxiliary equation Correct CF, either form (Often not seen until GS stated) Correct form for the PI Differentiate twice and sub in the original equation Obtain a pair of simultaneous equations and attempt to solve Correct values for both unknowns Form the GS. Must start $y =$ Follow through their CF (writing CF scores AC scored a minimum of 2 of the M marks	0) Must have
(0)	For CF $y = e^{-x} (A \cos 2x + B \sin 2x)$	
M1 M1 A1ft dM1	Sub $x = 0$, $y = 0$ in their GS and obtain a value for A Differentiate their GS Product rule must be used Correct differentiation of their GS provided this has 4 terms Sub $x = 0$ $\frac{dy}{dt} = 0$ and their A and obtain a value for B Depends on both previous	ious M marks
A1	Fully correct PS. Must start $y =$	
ALT(b)	For CF $y = e^{-x} (Pe^{i2x} + Qe^{-i2x})$ or $y = Pe^{(-1+2i)x} + Qe^{(-1-2i)x}$	
M1	Sub $x = 0$, $y = 0$ in their GS and obtain an equation in P and Q	
M1	Differentiate their GS Product rule must be used if $y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right)$ use	d
A1ft	Correct differentiation of their GS	
dM1	Sub $x = 0$, $\frac{dy}{dx} = 0$ to obtain a second equation and solve the pair of equations	The solution
A1	must allow for P and Q to be complex Fully correct PS. Must start $y =$	

Question Number	Scheme	Marks
7		D1
(a)	$x = r \cos \theta = 3 \sin 2\theta \cos \theta$ dx	BI
	$\frac{d\theta}{d\theta} = 6\cos 2\theta \cos \theta - 3\sin 2\theta \sin \theta = 0$	M1
	$2\cos\theta\left(\cos^2\theta - 2\sin^2\theta\right) = 0$	M1
ALT	For the 2 M marks:	
	$x = 6\sin\theta\cos^2\theta \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 6\cos^3\theta - 12\sin^2\theta\cos\theta = 0$	
	$\tan\phi = \frac{1}{\sqrt{2}} *$	A1 * (4)
(b)	$ \tan \phi = \frac{1}{\sqrt{2}} \implies \sin \phi = \frac{1}{\sqrt{3}}, \ \cos \phi = \frac{\sqrt{2}}{\sqrt{3}} $	M1
	$R = 3 \times 2 \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{2}}{\sqrt{3}} = 2\sqrt{2}$	A1 (2)
(c)	Area of sector = $\frac{1}{2}\int r^2 d\theta = \frac{9}{2}\int \sin^2 2\theta d\theta$	M1
	$=\frac{9}{2}\int_{0}^{\arctan\left(\frac{1}{\sqrt{2}}\right)}\frac{1}{2}\left(1-\cos 4\theta\right)d\theta$	M1
	$=\frac{9}{2}\left[\frac{1}{2}\left(\theta-\frac{1}{4}\sin 4\theta\right)\right]_{0}^{\arctan\frac{1}{\sqrt{2}}}$	M1A1
	$=\frac{9}{4}\left[\arctan\frac{1}{\sqrt{2}}-\frac{1}{4}\sin 4\left(\arctan\frac{1}{\sqrt{2}}\right)-0\right]$	dM1
	$\sin 4\phi = 2\sin 2\phi \cos 2\phi = 4\sin\phi \cos\phi \left(2\cos^2\phi - 1\right)$ $= 4 \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{2}}{\sqrt{3}} \left(2 \times \frac{2}{3} - 1\right) = \frac{4\sqrt{2}}{9}$	M1
	Area of sector $= \frac{9}{4} \left(\arctan \frac{1}{\sqrt{2}} - \frac{1}{4} \times \frac{4\sqrt{2}}{9} \right) = \frac{9}{4} \arctan \frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{4}$	A1 (7) [13]

Question Number	Scheme	Marks
(a)		
B 1	State $x = (r \cos \theta) = 3 \sin 2\theta \cos 2\theta$ May be given by implication	
M1	Attempt to differentiate $x = r \cos \theta$ or $x = r \sin \theta$ Product rule must be used	
M1	Use a correct double angle formula and equate the derivative of $r \cos \theta$ to 0 M1 Attempt the differentiation of $x = r \cos \theta$ or $x = r \sin \theta$ using the product	rule (after
ALT	using a double angle formula) M1 Use a correct double angle formula and equate the derivative of $r \cos \theta$ to	o 0
A1*	Complete to the given answer and no extras with no errors in the working. Acc All values seen must be exact	cept θ or ϕ
(b)		
M1	Attempt exact values for $\sin \theta$ and $\cos \theta$ and use these to obtain a value for <i>k</i>	?.
	Values for $\sin\theta$ and/or $\cos\theta$ may have been seen in (a)	
A1	A correct, exact value for <i>R</i> , as shown or any equivalent. Award M1A1 for a correct exact answer	
(c)		
M1	Use of Area $=\frac{1}{2}\int r^2 d\theta$ Limits not needed (ignore any shown)	
M1	Use the double angle formula to obtain $k \int \frac{1}{2} (1 \pm \cos 4\theta) d\theta$ Ignore any lim	its given
	This is NOT dependent NB: There are other, lengthy, methods of reaching this point	
M1	Attempt the integration $\cos 4\theta \rightarrow \pm \frac{1}{4}\sin 4\theta$ (Not dependent)	
A1	Correct integration of $1 - \cos 4\theta$	
dM1	Correct use of correct limits. Depends on second and third M marks 0 at lower limit need not be shown	
M1	Attempt an exact numerical value for $\sin 4 \left(\arctan \frac{1}{\sqrt{2}} \right)$	
A1	Correct final answer. Award M1A1 for a correct exact final answer	

Question Number	Scheme	Marks	8
8 (a)	$z^n = e^{in\theta} = \cos n\theta + i\sin n\theta$		
	$\frac{1}{z^n} = e^{-in\theta} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$ $z^n + \frac{1}{z^n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta = 2\cos n\theta *$	M1A1csc) (2)
(b)	$\left(z+\frac{1}{z}\right)^{6} = z^{6} + 6z^{5} \times \frac{1}{z} + \frac{6 \times 5}{2!} z^{4} \times \frac{1}{z^{2}} + \frac{6 \times 5 \times 4}{3!} z^{3} \times \frac{1}{z^{3}} + \frac{6 \times 5 \times 4 \times 3}{4!} z^{2} \times \frac{1}{z^{4}} + \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} z \times \frac{1}{z^{5}} + \frac{1}{z^{6}} \left(2\cos\theta\right)^{6} = z^{6} + 6z^{4} + 15z^{2} + 20 + 15 \times \frac{1}{z^{2}} + 6 \times \frac{1}{z^{4}} + \frac{1}{z^{6}}$	M1A1	
	$64\cos^{6}\theta = z^{6} + \frac{1}{z^{6}} + 6\left(z^{4} + \frac{1}{z^{4}}\right) + 15\left(z^{2} + \frac{1}{z^{2}}\right) + 20$	M1	
	$64\cos^{\circ}\theta = 2\cos 6\theta + 6 \times 2\cos 4\theta + 15 \times 2\cos 2\theta + 20$	MI	
	$\cos^{6}\theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right) *$	A1*	(5)
(c)	$\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 = 10$ 32 cos ⁶ $\theta = 10$	M1A1	
	$\cos \theta = \pm \sqrt[6]{\frac{5}{16}}$ $\theta = 0.6027, 2.5388 \theta = 0.603, 2.54$	M1A1	(4)
(d)	$\int_0^{\frac{\pi}{3}} \left(32\cos^6\theta - 4\cos^2\theta \right) \mathrm{d}\theta$		
	$= \int_{0}^{\frac{\pi}{3}} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 - 4\cos^2 \theta) d\theta$		
	$= \int_0^{\frac{\pi}{3}} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 - 2 - 2\cos 2\theta) d\theta$	M1	
	$= \left[\frac{1}{6}\sin 6\theta + \frac{3}{2}\sin 4\theta + \frac{13}{2}\sin 2\theta + 8\theta\right]_{0}^{\frac{\pi}{3}}$	M1A1	
	$= (0) + \frac{3}{2} \left(-\frac{\sqrt{3}}{2} \right) + \frac{13}{2} \times \frac{\sqrt{3}}{2} + \frac{8\pi}{3} (-0)$	dM1	
	$=\frac{5\sqrt{3}}{2}+\frac{8\pi}{3} \text{oe}$	A1	(5) [16]
<u>I</u>		1	

Page 25 of 123

Question Number	Scheme	Marks	
(a)			
M1	Attempt to obtain $z^n + \frac{1}{z^n}$		
A1cso	Reach the given result with clear working and no errors Must see $cos(-n\theta)$ +	$i\sin(-n\theta)$	
	changed to $\cos n\theta - i \sin n\theta$ (ie both included)		
(b)	The first 3 marks apply to the binomial expansion only		
	$(1)^6$		
M1	Apply the binomial expansion to $\left(z + \frac{1}{z}\right)$ Coefficients must be numerical (ie ${}^{n}C_{r}$ is not		
	acceptable). The expansion must have 7 terms with at least 4 correct		
A1 M1	Correct expansion, terms need not be simplified		
IVI I	simplify the coefficients and pair the appropriate terms on RHS (At least 2 pa correct)	irs must be	
M1	Use the result from (a) throughout. Must include 2^6 or 64 now		
A1*	Obtain the given result with no errors in the working		
(c)			
	Use the result from (b) to simplify the given equation $P_{acc} = \frac{1}{2} \cos^6 \theta = 10$		
AI M1	Keach $32\cos^2\theta = 10$ oe Solve to obtain at least one correct value for θ in radians and in the given range 3 sf or		
	better	50, 5 51 61	
A1	2 correct values, and no extras, in radians and in the given range. Must be 3 sf	here Ignore	
	extras outside the range		
(a) M1	Use the result in (b) to change $\cos^6 \theta$ to a sum of multiple angles ready for integration and		
	1 = 2 = 2 = 2 = 1 (2) is change cos of the stand of manipped angles ready for integration and $1 = 2 = 2 = 1$ (2) is change cos of the stand of manipped angles ready for integration and $1 = 2 = 2 = 1$		
	$\frac{1}{2}$		
M1	Integrate their expression to obtain an expression containing terms in $\sin 6\theta$, $\sin 4\theta$, $\sin 2\theta$ and θ Limits not needed		
A1	Correct integration Limits not needed		
dM1	Substitute limit pi/3. Depends second M mark		
A1	Correct, exact, answer (any equivalent to that shown). AwardM1A1 for a correct following fully correct working	ect final answer	
	Tonowing fully confect working.		
	There are other ways to integrate the function in (d), eg parts on one or both of	f the powers of	
	$\cos\theta$, using $\cos^6\theta = (\cos^2\theta)^3 = \frac{1}{8}(1+\cos 2\theta)^3 = \dots$		
	If in doubt about the marking of alternative methods which are not completely	correct, send to	
	review		

1

Question Number	Scheme	Marks
1 1(a)	$\frac{2}{r(r+1)(r-1)} = \frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}$	M1A1A1 (3)
1(b)	$r = 2 \qquad 1 - \frac{2}{2} + \frac{1}{3}$ $r = 3 \qquad \frac{1}{2} - \frac{2}{3} + \frac{1}{4}$ $r = 4 \qquad \frac{1}{2} - \frac{2}{4} + \frac{1}{5}$	M1
	$r = n - 1 \frac{1}{n - 2} - \frac{2}{n - 1} + \frac{1}{n}$	
	$r = n \qquad \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}$	M1
	$\sum_{r=2}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right) = \left(1 - \frac{2}{2} + \frac{1}{2} + \frac{1}{n} - \frac{2}{n} + \frac{1}{n+1} \right)$	A1
	$\frac{1}{2}\sum_{r=1}^{n}\frac{2}{r(r+1)(r-1)} = \frac{1}{2} \times \left(\frac{1}{2} - \frac{1}{n} + \frac{1}{n+1}\right) = \frac{n^2 + n - 2}{4n(n+1)}$	dM1A1 (5)
(a) M1 A1A1 (b)	Attempt PFs by any valid method (by implication if 3 correct fractions seen) A1 any 2 fractions correct; A1 third fraction correct)
(0) M1 M1 A1 dM1	Method of differences with at least 3 terms at start and 2 at end OR 2 at start and 3 at end. Must start at 2 and end at <i>n</i> One M mark for the initial terms and a second for the final. Last lines may be missing $k/(n - 1)$ and $c/(n - 2)$ These 2 M marks may be implied by a correct extraction of terms. If starting from 1, M0M1 can be awarded. Extract the remaining terms. $1 - 2/2$ may be missing and $1/n - 2/n$ may be combined Include the $1/2$ and attempt a common denominator of the required form. Depends on both previous M marks	
A1	$\frac{n^2 + n - 2}{4n(n+1)}$	

Page 27 of 123

Question Number	Scheme	Marks
1(a)	Special Case: $\frac{2}{r(r^2-1)} = \frac{2r}{r^2-1} - \frac{2}{r}$ seen, award M1A1A0 Award M1A0A0 provided of the form $\frac{2}{r(r^2-1)} = \frac{Ar}{r^2-1} - \frac{B}{r}$	
1(b)	Terms listed as described above – award M1M1. Further progress unlikely a terms needed to establish the cancellation.	s too many

Question Number	Scheme	Marks
2	$w = \frac{z+2}{z}$ $z \neq i$	
	$z = \frac{2 + iw}{w - 1}$	M1
	$ z = 2 \Rightarrow \left \frac{-1}{w-1}\right = 2 \Rightarrow 2 + iw = 2 w-1 $ $ 2 + iu - v = 2 u + iv - 1 $	M1 A1
	$(2-v)^{2} + u^{2} = 4((u-1)^{2} + v^{2})$	M1 A1
	$3u^2 + 3v^2 - 8u + 4v = 0 \text{oe}$	
	$\left(u - \frac{4}{3}\right)^2 + \left(v + \frac{2}{3}\right)^2 = \frac{20}{9}$ or $u^2 + v^2 - \frac{8}{3}u + \frac{4}{3}v = 0$	dM1
	(i) centre is $\left(\frac{4}{3}, -\frac{2}{3}\right)$	A1
	(ii) radius is $\frac{2\sqrt{5}}{3}$ oe	A1 [8]
M1	Rearrange equation to $z =$	1
M1	Change w to $u + iv$ and use $ z = 2$ Allow if a different pair of letters used.	
A1	Correct equation	
M1	Correct use of Pythagoras on either side. Allow with 2 or 4 (RHS)	
Al dM1	Correct unsimplified equation Attempt the circle form. Coefficients for u^2 and v^2 must be 1. Depends on all	2 provious M
UIVII	marks	5 previous M
(i)A1	Correct centre given (no decimals) (Use of rounded decimals changes the va	alues)
(ii)A1	Correct radius given, any equivalent form (but no decimals) NB: These 2 A marks can only be awarded if the results have been deduced from a correct	
ALT 1		
M1	Change w to $u + iv$ Allow a different pair of letters.	
M1	Rearrange equation to $z =$ and use $ z = 2$	
A1	Correct equation	
	Then as above.	
ALT 2	Very rare but may be seen:	
	i maps to $\infty \Rightarrow \pm 2i$ map to a diameter of C	M1A1
	So $\frac{2i+2}{i}$ and $\frac{-2i+2}{-3i}$ are ends of a diameter	M2A1
	Calculate centre and radius	M1A1A1

1

Question Number	Scheme	Marks
3(a)	$y = r\sin\theta = \sin\theta + \sin\theta\cos\theta$ OR $r\sin\theta = \sin\theta + \frac{1}{2}\sin 2\theta$	B1
	$\frac{dy}{d\theta} = \cos\theta - \sin^2\theta + \cos^2\theta \qquad \text{OR} \frac{dy}{d\theta} = \cos\theta + \cos 2\theta$ $0 = \cos\theta + 2\cos^2\theta - 1 = (2\cos\theta - 1)(\cos\theta + 1)$	M1
	$\cos\theta = \frac{1}{2} (\cos\theta = -1 \text{ outside range for } \theta) \theta = \frac{\pi}{3}$	M1
	$A ext{ is } \left(1\frac{1}{2}, \frac{\pi}{3}\right)$	A1 (4)
3(b)	Area $= \frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos\theta)^2 \mathrm{d}\theta$	B1
	$=\frac{1}{2}\int \left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)d\theta$	M1A1
	$=\frac{1}{2}\left[\frac{3}{2}\theta+2\sin\theta+\frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$	dM1A1
	$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1 (6)
(a)		[_``]_
B1	Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use formula is seen.	of double angle
M1	Differentiate $r \sin \theta$ or $r \cos \theta$	
M1	Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used n	eed be shown.
A1	Correct coordinates of A	
(b)B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
M1	Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change	$e \cos^2 \theta$ to an
	expression in $\cos 2\theta$ using $\cos^2 \theta = \frac{1}{2} (\pm \cos 2\theta \pm 1)$	
A1	Correct integrand; limits not needed. $\frac{1}{2}$ may be missing.	
dM1	Attempt to integrate all terms. $\cos 2\theta \rightarrow \pm \frac{1}{k} \sin 2\theta \ k = \pm 1 \text{ or } \pm 2$ Limits not	t needed.
	Depends on the previous M mark	
A1 A1	Correct integration and correct limits seen Substitute correct limits and obtain the correct answer in the required form	
AI	Substitute correct minits and obtain the correct answer in the required form.	

Page 30 of 123

Question Number	Scheme	Marks
	Alternative for (b) using integration by parts (Very rare but may be seen)	
	Area $= \frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos \theta)^2 \mathrm{d}\theta$	B1
	$=\frac{1}{2}\left[\int (1+2\cos\theta)d\theta + \int \cos^2\theta d\theta\right]$	
	$=\frac{1}{2}\left[\int (1+2\cos\theta)d\theta + \cos\theta\sin\theta + \int \sin^2\theta d\theta\right]$	M1A1
	$=\frac{1}{2}\left[\theta+2\sin\theta+\sin\theta\cos\theta+\int\left(1-\cos^2\theta\right)d\theta\right]_0^{\frac{\pi}{3}}$	
	$=\frac{1}{2}\left[\theta+2\sin\theta+\frac{1}{2}(\sin\theta\cos\theta+\theta)\right]_{0}^{\frac{\pi}{3}}$	dM1A1
	$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1
B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
M1	Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and attempt	ot first stage
IVII I	of $\int \cos^2 \theta d\theta$ by parts. Reach $\int \cos^2 \theta d\theta = \cos \theta \sin \theta \pm \int \sin^2 \theta d\theta$ Limits not needed	
A1	Correct so far. Limits not needed.	
dM1	Attempt to integrate all terms. $\int (1+2\cos\theta) d\theta$ and attempt to complete $\int \cos^2\theta d\theta$ using	
A1A1	Pythagoras identity. Limits not needed. Depends on the previous M mark As main scheme	

Question Number	Scheme	Marks
4 (a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 3$	M1
	$\frac{d^3 y}{dx^3} = -\frac{4}{y^2} \left(\frac{dy}{dx}\right)^3 + \frac{8}{y} \times \frac{d^2 y}{dx^2} \times \frac{dy}{dx}$	M1A1A1
	$\frac{d^3 y}{dx^3} = -\frac{4}{y^2} \left(\frac{dy}{dx}\right)^3 + \frac{8}{y} \left(\frac{4}{y} \left(\frac{dy}{dx}\right)^2 - 3\right) \left(\frac{dy}{dx}\right)$	
	$\frac{d^3 y}{dx^3} = \frac{28}{y^2} \left(\frac{dy}{dx}\right)^3 - \frac{24}{y} \left(\frac{dy}{dx}\right) \texttt{*}$	A1* (5)
ALT	$\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - 8\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1A1A1
	$\frac{d^3 y}{dx^3} = \frac{1}{y} \left(7 \frac{dy}{dx} \right) \left(\frac{4}{y} \left(\frac{dy}{dx} \right)^2 - 3 \right) - \frac{3}{y} \frac{dy}{dx}$	M1
	$\frac{d^3 y}{dx^3} = \frac{28}{y^2} \left(\frac{dy}{dx}\right)^3 - \frac{24}{y} \left(\frac{dy}{dx}\right) \bigstar$	A1* (5)
4(b)	At $x = 0$ $\frac{d^2 y}{dx^2} = \frac{4}{8} (1)^2 - 3 = -\frac{5}{2}$ oe	B1
	$\frac{d^3 y}{dx^3} = \frac{28}{64} \times 1^3 - \frac{24}{8} \times 1 = -\frac{41}{16}$	M1
	$y = 8 + x - \frac{5}{2} \times \frac{x^2}{2!} - \frac{41}{16} \times \frac{x^3}{3!} + \dots$	M1
	$y = 8 + x - \frac{5}{4}x^2 - \frac{41}{96}x^3 + \dots$	A1 (4) [9]

FP2_2021_06_MS

Question Number	Scheme	Marks
5(a) M1	Divide through by y No need to re-arrange the equation until later	
M1	Attempt the differentiation using product rule and chain rule and obtain $\frac{d^3y}{dx^3}$	=
A1A1	A1 Either RHS term correct A1 Second RHS term correct and no extras	
A1*	Eliminate $\frac{d^2 y}{dx^2}$ and obtain the given result	
ALT M1 M1 A1A1 A1 [*]	Re-arrange the equation (Will probably be seen later in work) Attempt the differentiation using product rule and chain rule A1 Two terms correct A1 All correct and no extras Eliminate $\frac{d^2 y}{dx^2}$ and obtain the correct result	
5(b)B1	Correct value for $\frac{d^2 y}{dx^2}$	
M 1	Use the given expression from (a) to obtain a value for $\frac{d^3y}{dx^3}$ Award if correc	t value seen.
M1 A1	Taylor's series formed using their values for the derivatives (2! or 2, 3! or 6) Correct series, must start (or end) $y = \dots$ Correct terms must be seen, order m Can have $f(x) = \dots$ provided $f(x) = y$ is defined somewhere.	ay be different.

Question Number	Scheme	Marks
5 NB	Question states "Use algebra" so purely graphical solutions (using calculator?) score 0/7. A sketch and some algebra to find intersection points can score.	
	$2x^{2} + x - 3 \ge 0$ $2x^{2} + x - 3 = 3(1 - x) \Longrightarrow 2x^{2} + 4x - 6 = 0$	M1
	$2x^{2} + 4x - 6 \Longrightarrow x^{2} + 2x - 3 = (x+3)(x-1) = 0$ x = -3, 1	A1
	$2x^2 + x - 3 \le 0$	
	$-2x^2 - x + 3 = 3(1 - x) \Longrightarrow 2x^2 - 2x = 0$	M1
	$2x(x-1) = 0, \ x = 0, 1$	A1
	x < -3 $0 < x < 1$ $x > 1$	dM1A1A1 [7]
M1 A1 M1 A1 dM1 A1 A1	The first 4 marks can be awarded with any inequality sign or = Assume $2x^2 + x - 3 \ge 0$ and obtain a 3TQ Correct CVs obtained from a correct equation. Assume $2x^2 + x - 3 \le 0$ and obtain a 2 or 3TQ Correct CVs obtained from a correct equation. Form 3 distinct inequalities with their 3 CVs. Can have < or \le , > or \ge . Must have scored both previous M marks. Accept $x < -3$ $0 < x$ $x \ne 1$ All 3 correct CVs used correctly Inequalities fully correct. "and" between the inequalities is acceptable. If \cap is used, award A0 here. Fully correct set language accepted.	
ALT	Squaring both sides $(2x^{2} + x - 3)^{2} > 9(1 - x)^{2}$ $4x^{4} + 4x^{3} - 20x^{2} + 12x > 0$ x(x+3)(x-1)(x-1) > 0 CVs: $x = 0, -3, 1$ Then as main scheme	M1A1 M1 A1
M1 A1 M1 A1	These 4 marks can be awarded with any inequality sign or = Square both sides and collect terms to obtain a quartic with 4 or 5 terms Correct quartic Factorise their quartic 3 correct CVs	

Page 34 of 123

Question Number	Scheme	Marks
6(a)	$m^2 - 6m + 8 = 0$	
	(m-2)(m-4) = 0, m = 2, 4	M1
	$(CF =) Ae^{2x} + Be^{4x}$	A1
	PI: $v = \lambda x^2 + \mu x + v$	B1
	$y' = 2\lambda x + \mu y'' = 2\lambda$	
	$2\lambda - 6(2\lambda x + \mu) + 8(\lambda x^2 + \mu x + \nu) = 2x^2 + x$	M1
	$\lambda = \frac{1}{4}, -12\lambda + 8\mu = 1, 2\lambda - 6\mu + 8\nu = 0$	M1
	$\lambda = \frac{1}{4}, \ \mu = \frac{1}{2}, \ \nu = \frac{5}{16}$	A1A1
	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	A1ft (8)
(a)M1	Form aux equation and attempt to solve (any valid method). Equation need n CF is correct or complete solution $(m = 2, 4)$ is shown	ot be shown if
A1	Correct CF $y =$ not needed.	
B1	Correct form for PI	
M1 M1	Their PI (minimum 2 terms) differentiated twice and substituted in the equation	ion
	Coefficients equated	
AI A1	All 3 values correct	
A1ft	A complete solution, follow through their CF and PI. All 3 M marks must ha	ve been earned.
	Must start $y =$	
6(b)	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	
	$1 = A + B + \frac{5}{16}$	M1
	$\frac{dy}{dx} = 2Ae^{2x} + 4Be^{4x} + \frac{1}{2}x + \frac{1}{2} \qquad 0 = 2A + 4B + \frac{1}{2}$	M1
	$A = \frac{13}{8} B = -\frac{15}{16}$ oe	dM1A1
	$y = \frac{13}{8}e^{2x} - \frac{15}{16}e^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16} \text{oe}$	Alft (5)
		[13]
(D) M1	Substitute $y = 1$ and $x = 0$ in their complete solution from (a)	
1911	$\int dv$	
M1	Differentiate and substitute $\frac{dy}{dx} = 0$, $x = 0$	
dM1	Solve the 2 equations to $A =$ or $B =$ Depends on the two previous M mat	rks
A1	Both values correct	
A1ft	Particular solution, follow through their general solution and A and B. Must s	start $y = \dots$

Question Number	Scheme	Marks
7(a)	$(\cos\theta + i\sin\theta)^4 = \cos 4\theta + i\sin 4\theta$	
	$\cos^{4}\theta + 4\cos^{3}\theta(i\sin\theta) + \frac{4\times3}{2!}\cos^{2}\theta(i\sin\theta)^{2} + \frac{4\times3\times2}{3!}\cos\theta(i\sin\theta)^{3} + (i\sin\theta)^{4}$	M1
	$=\cos^4\theta + 4i\cos^3\theta\sin\theta + i^26\cos^2\theta\sin^2\theta + 4i^3\cos\theta\sin^3\theta + i^4\sin^4\theta$	A1
	$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	M1
	$\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$	A1
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta}{\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta}$	
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4\tan \theta - 4\tan^3 \theta}{1 - 6\tan^2 \theta + \tan^4 \theta} *$	M1A1* (6)
7(b)	$x = \tan \theta \qquad \frac{2 \tan \theta - 2 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta} = \frac{1}{2} \tan 4\theta = 1$	
	$\tan 4\theta = 2$	M1
	$x = \tan \theta = 0.284, \ 1.79$	A1A1 (3) [9]
(a) M1 A1 M1 A1 M1	Correct use of de Moivre and attempt the complete expansion Correct expansion. Coefficients to be single numbers but powers of i may still be present. Equate the real and imaginary parts Correct expressions for $\cos 4\theta$ and $\sin 4\theta$ Use $\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta}$ and divide numerator and denominator by $\cos^4 \theta$ Only tangents now.	
A1*	Correct given answer, no errors seen.	
(b) M1	Substitute $x = \tan \theta$ and re-arrange to $\tan 4\theta = \pm 2$ or $\pm \frac{1}{2}$	
A1A1	A1 for either solution; A2 for both. Deduct one mark only for failing to round either or both to 3 sf (One correct answer but not rounded scores A0A0; two correct answers neither rounded scores A1A0; two correct answers, only one rounded, scores A1A0)	
Question Number	Scheme	Marks
----------------------	---	----------------------
	Alternative for first 4 marks of 7(a): $\sin 4\theta = \frac{1}{2i} \left(z^4 - z^{-4} \right) = \frac{1}{2i} \left(\left(\cos \theta - i \sin \theta \right)^4 - \left(\cos \theta + i \sin \theta \right)^{-4} \right)$ $= \frac{1}{2i} \left(\cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta \right)$ $- \frac{1}{2i} \left(-\cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta - \sin^4 \theta \right)$ $= 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$ Similar work leads to $\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$ Remaining 2 marks as main scheme	M1 M1 A1 A1
M1 A1 M1 A1	For the expression derived from de Moivre for either $\sin 4\theta$ or $\cos 4\theta$ Both shown and correct Attempt the binomial expansion for either, reaching a simplified expression Both simplified expressions correct	L

Question Number	Scheme	Marks
8(a)	$v = y^{-2} \qquad \frac{\mathrm{d}v}{\mathrm{d}y} = -2y^{-3}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}y} \times \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{y^3}{2} \frac{\mathrm{d}v}{\mathrm{d}x}$	M1A1
	$-\frac{y^{3}}{2}\frac{dv}{dx} + 6xy = 3xe^{x^{2}}y^{3}$	
	$\frac{1}{2}\frac{dv}{dx} - \frac{6xy}{y^3} = -3xe^{x^2}$	
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2} \qquad \qquad$	dM1A1* (5)
ALT 1	$y = v^{-\frac{1}{2}} \frac{dy}{dv} = -\frac{1}{2}v^{-\frac{3}{2}}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}v} \times \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{1}{2}v^{-\frac{3}{2}}\frac{\mathrm{d}v}{\mathrm{d}x}$	M1A1
	$-\frac{1}{2}v^{-\frac{3}{2}}\frac{\mathrm{d}v}{\mathrm{d}x} + 6xv^{-\frac{1}{2}} = 3xe^{x^2}v^{-\frac{3}{2}}$	dM1
	$-\frac{1}{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 6xv = 3x\mathrm{e}^{x^2}$	
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2} \qquad \mathbf{*}$	A1* (5)
ALT 2	$v = y^{-2} \qquad \frac{\mathrm{d}v}{\mathrm{d}y} = -2y^{-3}$	B1
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1
	$-2y^{-3}\frac{dy}{dx} - 12y^{-2}x = -6xe^{x^2}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 6xy = 3x\mathrm{e}^{x^2}y^3 \qquad x > 0$	A1* (5)
8(a) B1	All Methods: Correct derivative	
M1	Attempt $\frac{dy}{dx}$ or $\frac{dv}{dx}$ using the chain rule	
A1 dM1	Correct derivative Substitute in equation (I) to obtain an equation in v and x only OR in equation an equation in x and y only (ALT 2)	n (II) to obtain
A1*	Correct completion with no errors seen	

Question Number	Scheme	Marks	
8(b)	IF: $e^{\int -12x dx} = e^{-6x^2}$	M1A1	
	$ve^{-6x^2} = \int -6xe^{x^2} \times (e^{-6x^2}) dx = \int -6xe^{-5x^2} dx$	dM1	
	$v e^{-6x^2} = \frac{6}{10} e^{-5x^2} (+c)$	A1	
	$v\left(=y^{-2}\right) = \frac{6}{10}e^{x^2} + ce^{6x^2}$	ddM1	
	$y^{2} = \frac{1}{\frac{6}{10}e^{x^{2}} + ce^{6x^{2}}}$ oe eg $y^{2} = \frac{10}{6e^{x^{2}} + ke^{6x^{2}}}$	A1 (6)	
(b)			
M1	IF of form $e^{\int \pm 12x dx}$ and attempt the integration.		
A1	Correct IF		
dM1	Multiply through by their IF and integrate the LHS. Depends on first M mark of (b)		
AI ddM1	Correct integration of the complete equation with or without constant x^2		
A1	Any equivalent to that shown. (No need to change letter used for constant wh	s M marks of (b) nen rearranging)	

Question Number	Scheme	Notes	Marks
1	$z^5 - 32i = 0 \Longrightarrow r^5 = 32 \Longrightarrow r = 2$	Correct value for <i>r</i> . May be shown explicitly or used correctly.	B1
	$5\theta = \frac{\pi}{2} + 2n\pi \Longrightarrow \theta = \frac{\pi}{10} + \frac{2n\pi}{5}$	Applies a correct strategy for establishing at least 2 values of θ . This can be awarded if if the initial angle $\left(\frac{\pi}{2} \text{ or } \frac{\pi}{10}\right)$ is incorrect but otherwise their strategy is correct.	M1
	$z = 2e^{i\frac{\pi}{10}}, 2e^{i\frac{\pi}{2}}, 2e^{i\frac{9\pi}{10}}, 2e^{i\frac{13\pi}{10}}, 2e^{i\frac{17\pi}{10}}$ or	At least 2 correct, follow through their r	A1ft
	$z = 2e^{\left(\frac{\pi}{10} + \frac{2n\pi}{5}\right)^{i}}, n = 0, 1, 2, 3, 4$	All correct. Must have $r = 2$	A1
			(4)
			Total 4

WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks	
2	$\frac{x}{2-x}$ " $\frac{x+3}{x}$			
Way 1	$\frac{x}{2-x} \xrightarrow{XX} x \xrightarrow{X+3} x \xrightarrow{X-x} \frac{x+3}{x} = 0$ Collects to one side			
	$\frac{x}{2-x} - \frac{x+3}{x} \not \boxtimes 0 \Rightarrow \frac{x^2 - (2-x)(x+3)}{x(2-x)} = 0$			
	M1: Attempt com A1: Corre	nmon denominator ect fraction		
	x = 0, 2	These critical values	B1	
	$x^{2} - (2 - x)(x + 3) = 0$ $\Rightarrow 2x^{2} + x - 6 = 0 \Rightarrow x = \dots$	Solves the 3TQ in the numerator	M1	
	$x = \frac{3}{2}, -2$	These critical values	A1	
	$x $ $ \Re -2, 0 < x = \frac{3}{2}, x > 2 $			
	A1: Any 2 of these with strict inequalities allowed A1: All correct with inequalities as shown. Ignore what they have between their inequalities			
	e.g. anow or , and , , etc. but not ()		(8)	
	Alternative 1	$:\times x^2 (2-x)^2$		
	$x^{3}(2-x)$, $x(x+3)(2-x)^{2}$	Multiplies by a positive expression	M1	
	$x^{3}(2-x) - x(x+3)(2-x)^{2}$, 0	Collects to one side	M1	
	r = 0.2	Correct inequality	Al D1	
	$\frac{x-0, 2}{x-0, 2}$		DI	
	x(2-x)[x - (x+3)(2-x)] = 0 $x^{2} - (x+3)(2-x) = 0$	Attempts to factorise by taking out a factor of $x(2-x)$ and solves resulting 3TO. May have	M1	
	$\Rightarrow 2x^2 + x - 6 = 0 \Rightarrow x = \dots$	quartic and apply the factor theorem.		
	$x = \frac{3}{2}, -2$	These critical values	A1	
	$x \stackrel{\text{R}}{} -2, 0 < x = \frac{3}{2}, x > 2$ A1: Any 2 of these with strict inequalities allowed A1: All correct with inequalities as shown. Ignore what they have between their inequalities e.g. allow "or", "and", "," etc. but not \bigcirc			

Question Number	Scheme	Notes	Marks
3	$w = \frac{(2+i)z+4}{z-i} \Longrightarrow wz - wi = (2+i)z+4$ $\Longrightarrow z = \dots$	Attempts to make z the subject	M1
	$z = \frac{wi+4}{w-2-i}$	Correct equation in any form	A1
	$z = \frac{(u + iv)i + 4}{u + iv - 2 - i}$ $z = \frac{((u + iv)i + 4)(u - 2 - (v - 1)i)}{(u - 2 + (v - 1)i)(u - 2 - (v - 1)i)}$	Introduces $w = u + iv$ and multiplies numerator and denominator by the conjugate of the denominator	M1
	u(v-1)+(4-v)(u-2)=0	Sets real part = 0 (with or without denominator) Depends on both M marks above	dM1
		Any correct equation	A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			(6)
Way 2	$w = \frac{(2+i)z+4}{z-i}, z = yi \Longrightarrow w = \frac{(2+i)yi+4}{yi-i}$ $w = \frac{(2+i)yi+4}{yi-i} \times \frac{i}{i}$	Solves simultaneously and multiplies numerator and denominator by i	M1
	$u = \frac{2y}{y-1}, v = \frac{y-4}{y-1}$	Correct real and imaginary parts	A1
	$u = \frac{2y}{y-1} \Longrightarrow y = \frac{u}{u-2}$	Attempts y in terms of u or v	M1
	$v = \frac{u}{u} \Longrightarrow v = \frac{u}{u-2} - 4$	Obtains an equation connecting u and v	M1
	u-2 $u-2-1$ $u-2-1$	Any correct equation	A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			(6)
Way 3	Apply the transformation to any point on the imaginary axis	$\operatorname{Eg}(0,0) \to (0,4) (0,1) \to (4,-2)$	M1
	Apply the transformation to a second point on the imaginary axis	This is the second M mark on e-PEN	M1
	Both transformations correct	This is the first A mark on e-PEN	A1
	Complete method to obtain an equation for the line thro' their 2 points in the <i>w</i> -plane		M1
	Correct equation in any form		A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			Total 6

Page 42 of 123

Question Number	Scheme	Notes	Marks
4(a)	$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} - xy = \mathrm{e}^3$	x x > -1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{xy}{(x+1)} = \frac{\mathrm{e}^{3x}}{(x+1)}$	Correctly rearranged equation	B1
	$I = e^{\int \frac{-x}{x+1} dx} = e^{\int \left(-1 + \frac{1}{x+1}\right) dx}$	Correct strategy for the integrating factor including an attempt at the integration	M1
	$= e^{-x + \ln(x+1)}$	For $-x + \ln(x+1)$	A1
	$=(x+1)e^{-x}$	Correct integrating factor	Al
	$y(x+1)e^{-x} = \int \frac{e^{3x}}{x+1} \times (x+1)e^{-x} dx$	Uses their integrating factor to reach the form $yI = \int QI dx$	M1
	$y(x+1)e^{-x} = \frac{1}{2}e^{2x} + c$	Correct equation (with or without $+ c$)	A1
	$y = \frac{e^{3x}}{2(x+1)} + \frac{ce^{x}}{(x+1)}$	Correct answer (allow equivalent forms). Must have $y =$	A1
			(7)
(b)	$x = 0, y = 5 \Longrightarrow 5 = \frac{1}{2} + c \Longrightarrow c = \frac{9}{2}$	Substitutes $x = 0$ and $y= 5$ and attempts to find a value for <i>c</i> .	M1
	$y = \frac{e^{3x}}{2(x+1)} + \frac{9e^{x}}{2(x+1)}$	Cao (oe) Must have $y =$	A1
-			(2)
			Total 9

Question Number	Scheme	Notes	Marks	
5(a)	$y = \tan^2 x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \tan x \sec^2 x$	Correct first derivative any correct form	B1	
	$\frac{dy}{dx} = 2 \tan x \sec^2 x \Rightarrow \frac{d^2 y}{dx^2} = 2$ M1: Correct application of the pr A1: Correct exp	$2 \sec^4 x + 4 \sec^2 x \tan^2 x$ roduct rule and chain rule	M1A1	
	$\frac{d^2 y}{dx^2} = 2 \sec^4 x + 4 \sec^2 x \tan^2 x \Rightarrow \frac{d^3 y}{dx^3} = 8 \sec^4 x \tan x + 8 \sec^2 x \tan^3 x + 8 \sec^4 x \tan x$ Or $\frac{d^2 y}{dx^2} = 6 \sec^4 x - 4 \sec^2 x \Rightarrow \frac{d^3 y}{dx^3} = 24 \sec^4 x \tan x - 8 \sec^2 x \tan x$ M1: Attempt to differentiate using product and chain rule. At least one term to be correct			
	$= 8 \sec^{4} x \tan x + 8 \sec^{2} x \tan x (s)$ $= 24 \sec^{4} x \tan x - 8 \sec^{2} x \tan x =$ Fully correct ex	$\sec^{2} x - 1 + 8 \sec^{4} x \tan x$ $8 \sec^{2} x \tan x (3 \sec^{2} x - 1)$ pression	A1	
(b)	$(y)_{\frac{\pi}{3}} = 3, (y')_{\frac{\pi}{3}} = 8\sqrt{3}, (y'')_{\frac{\pi}{3}} = 80, (y''')_{\frac{\pi}{3}} = 352\sqrt{3}$	Attempts the values up to the third derivative when $x = \frac{\pi}{3}$	M1	
	$y = 3 + 8\sqrt{3}\left(x - \frac{\pi}{3}\right) + \frac{80}{2!}\left(x - \frac{\pi}{3}\right)$ Correct application of the Tayle	$\int_{1}^{2} + \frac{352\sqrt{3}}{3!} \left(x - \frac{\pi}{3}\right)^{3} + \dots$ or series 2! or 2, 3! or 6	M1	
	$y = 3 + 8\sqrt{3}\left(x - \frac{\pi}{3}\right) + 40\left(x - \frac{\pi}{3}\right)$ Correct expa Must start $y = \dots$ or $\tan^2 x = \dots$ f(x) only accep	$\int_{1}^{2} + \frac{176\sqrt{3}}{3} \left(x - \frac{\pi}{3}\right)^{3} + \dots$ nsion ted if f(x) has been defined to be $\tan^{2}x$	A1	
			(3)	
			Total 8	

Question Number	Scheme	Notes	Marks	
6(a)	$\begin{vmatrix} z+1-13i \end{vmatrix} = 3 \begin{vmatrix} z-7-5i \end{vmatrix} \Longrightarrow (x+1)^2 + ($ Correct application of Pythagora	$(y-13)^2 = 9\{(x-7)^2 + (y-5)^2\}$ as Accept 3 or 9 on RHS	M1	
	$\Rightarrow x^2 + y^2 - 16x - 8y + 62 = 0$	Correct equation in any form with terms collected	A1	
	Centre (8, 4)	Correct centre. i included scores A0	A1	
	$r^2 = 64 + 16 - 62 = \dots$	Correct method for r or r^2	M1	
	$r = \sqrt{18}$ or $3\sqrt{2}$	Correct radius. Must be exact.	A1	
(b)	$\arg(z-8-6i) = -\frac{3\pi}{4} \Longrightarrow y-6 = x-8$	Converts the given locus to the correct Cartesian form	B1	
	$\Rightarrow x^{2} + y^{2} - 16x - 8y + 62 = 0$ $\Rightarrow x^{2} + (x - 2)^{2} - 16x - 8(x - 2) + 62 = 0 \Rightarrow x =$ or $\Rightarrow (y + 2)^{2} + y^{2} - 16x - 8(y + 2) + 62 = 0 \Rightarrow y =$	Uses both Cartesian equations to obtain an equation in one variable and attempts to solve	M1	
	$x = 7 - 2\sqrt{2}$ or $y = 5 - 2\sqrt{2}$	One correct "coordinate"	A1	
	<i>R</i> is $7 - 2\sqrt{2} + (5 - 2\sqrt{2})i$ or $x = 7 - 2\sqrt{2}$ and $y = 5 - 2\sqrt{2}$	Correct complex number or coordinates and no others. Must be exact	Al	
			(4)	
			Total 9	

Question Number	Scheme	Notes	Marks
7(a)	$x = t^2 \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = 2t \frac{\mathrm{d}t}{\mathrm{d}y}$ oe	Correct application of the chain rule	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2t} \frac{\mathrm{d}y}{\mathrm{d}t} \left(\text{ or e.g. } \frac{1}{2\sqrt{x}} \frac{\mathrm{d}y}{\mathrm{d}t} \right)$	Any correct expression for $\frac{dy}{dx}$ or equivalent equation	A1
	$2\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \Longrightarrow x^{-\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}x} + 2\sqrt{x}\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}\frac{\mathrm{d}t}{\mathrm{d}x}$ $(\mathrm{NB}\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = 2\frac{\mathrm{d}y}{\mathrm{d}x} + 4x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2})$	Fully correct strategy to obtain an equation involving $\frac{d^2 y}{dx^2}$ and $\frac{d^2 y}{dt^2}$ Chain rule used on at least one term. Depends on the first M mark	dM1
	$4x \frac{d^2 y}{dx^2} + 2(1 + 2\sqrt{x}) \frac{dy}{dx} - 15y = 15x \Longrightarrow 4$ $\Rightarrow \frac{d^2 y}{dt^2} + 2\frac{dy}{dt} - 1$ ddM1: Substitutes into the given differential equippends on both	$4x \frac{d^2 y}{dx^2} + 4\sqrt{x} \frac{dy}{dx} + 2\frac{dy}{dx} - 15y = 15x$ $5y = 15t^2 *$ uation. The full substitution must be seen. of M marks.	ddM1 A1*
	A1*: Cs	50	(5)
(b)	$m^2 + 2m - 15 - 0 \rightarrow m - 3 - 5$	Attempts to colve $m^2 + 2m + 15 = 0$	(5) M1
	$\frac{m+2m}{15-6} \xrightarrow{m-5}, 5$	Attempts to solve $m + 2m - 15 = 0$	
	$y = at^{2} + bt + c \Rightarrow \frac{dy}{dt} = 2$ $\Rightarrow 2a + 4at + 2b - 15at^{2}$ Starts with the correct PI form and difference of the correct of the correc	$2at + b \Rightarrow \frac{d^2 y}{dt^2} = 2a$ -15bt-15c = 15t ² ferentiates twice and substitutes	M1
	$-15a = 15 \Longrightarrow a = \dots$ $4a - 15b = 0 \Longrightarrow b = \dots$ $2a + 2b - 15c = 0 \Longrightarrow c = \dots$	Complete method to find <i>a</i> , <i>b</i> and <i>c</i> by comparing coefficients. Values for all 3 needed. Depends on the second M mark.	dM1
	$y = Ae^{-5t} + Be^{3t} - t^2 - \frac{4}{15}t - \frac{38}{225}$	Correct GS. Must start $y = \dots$	A1
			(5)
(c)	$y = Ae^{-5\sqrt{x}} + Be^{3\sqrt{x}} - x - \frac{4}{15}\sqrt{x} - \frac{38}{225}$	Correct equation (follow through their answer to (b)) Must start $y =$	B1ft
			(1)
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$x = r\cos\theta = (1 + \sin\theta)\cos\theta$ $\Rightarrow \frac{dx}{d\theta} = \cos^2\theta - (1 + \sin\theta)\sin\theta$	Differentiates $r \cos \theta$ using product rule or double angle formula	M1
	or $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta + \cos 2\theta$	Correct derivative in any form	A1
	$\cos^2\theta - (1 + \sin\theta)\sin\theta = 0 \Longrightarrow 1 - \sin^2\theta - \sin\theta$	$\theta - \sin^2 \theta = 0 \Longrightarrow 2\sin^2 \theta + \sin \theta - 1 = 0$	
	$-\sin\theta + \cos 2\theta = 0 \Longrightarrow -\sin\theta + 1 - 2\sin^2\theta$ dx	$e^2 \theta = 0 \Longrightarrow 2\sin^2 \theta + \sin \theta - 1 = 0$	dM1
	Sets $\frac{1}{d\theta} = 0$ and proceeds	to a 3TQ in $\sin\theta$	
	Depends on the firs	st M mark	
	$\Rightarrow 2\sin^2\theta + \sin\theta - 1 = 0$ $\Rightarrow \sin\theta = \frac{1}{2}, (-1) \Rightarrow \theta = \dots$	Solves for θ . Depends o both M marks above.	ddM1
	$\left(\frac{3}{2},\frac{\pi}{6}\right)$	Correct coordinates and no others. Need not be in coordinate brackets.	A1
			(5)
(b)	$\int (1+\sin\theta)^2 d\theta = \int (1+2\sin\theta+\sin^2\theta) d\theta$	Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies	M1
	$= \int \left(1 + 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta \right) d\theta$	$\sin^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ Ignore any limits shown	111
	$\int (1+\sin\theta)^2 d\theta = \frac{3}{2}\theta - 2\cos\theta - \frac{1}{4}\sin 2\theta(+c)$	Correct integration (Ignore limits)	A1
	$\frac{1}{2} \left[\frac{3}{2} \theta - 2\cos\theta - \frac{1}{4}\sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$	Applies the limits of $\frac{\pi}{2}$ and their $\frac{\pi}{6}$	M1
	$=\frac{1}{2}\left[\frac{3\pi}{4} - \left(\frac{\pi}{4} - \sqrt{3} - \frac{\sqrt{3}}{8}\right)\right]\left(=\frac{\pi}{4} + \frac{9\sqrt{3}}{16}\right)$	Substitution must be shown but no simplification needed	
	Trapezium:		
	$\frac{1}{2} \left(2 + \left(2 - \frac{3}{2} \sin \frac{\pi}{6} \right) \right) \times \frac{3}{2} \cos \frac{\pi}{6}$	Uses a correct strategy for the area of trapezium <i>OQSP</i>	M1
	$\left(=\frac{39\sqrt{3}}{32}\right)$		
	Area of $R = \frac{39\sqrt{3}}{32} - \frac{\pi}{4} - \frac{9\sqrt{3}}{16}$	Fully correct method for the required area. Depends on all previous method marks.	dM1
	$\frac{1}{32} \left(21\sqrt{3} - 8\pi \right)$	Cao	A1
			<u>(6)</u>

Page 47 of 123

Question Number	Scheme		Notes	Marks
9(a)	$n^{5} - (n-1)^{5} = n^{5} - (n^{5} - 5n^{5})^{5}$	$n^4 + 10n^2$	$(3^{3}-10n^{2}+5n-1) = \dots$	M1
	Starts the proof by	expandin Co	g the bracket rrect proof with no errors. Full	
	$5n^4 - 10n^3 + 10n^2 - 5n + 1^*$	exp	pansion of $(n-1)^5$ must be shown.	A1*
(b)	$15 0^5 5(1)^4 10$	$(1)^3 + 10$	$(1)^2$ $5(1) \cdot 1$	(2)
	1 - 0 = 5(1) - 10	(1) + 10 $(2)^3 + 10$	(1) - 5(1) + 1 $(2)^2 - 5(2) + 1$	
	$2^{3} - 1^{3} = 5(2)^{2} - 10(2)^{2} + 10(2)^{2} - 5(2) + 1$			
	$(n-1)^{5} - (n-2)^{5} = 5(n-1)^{4} - 1$	0(n-1)	$(n^{3}+10(n-1)^{2}-5(n-1)+1)$	
	$(n)^{5} - (n-1)^{5} = 5(n)^{4} - $	$-10(n)^{3}$	$+10(n)^2 - 5(n) + 1$	M1A1
	$n^5 = 5\sum_{i=1}^{n} r^4 - 10\sum_{i=1}^{n} r^4$	$r^{3} + 10\sum_{n=1}^{n}$	$r^2-5\sum_{i=1}^{n}r+n$	
	M1: Applies the result from part (a)) between	1 and <i>n</i> and sums both sides	
	Min 3 lines shown A1: Correct equation If only the last line is seen, award M1A1			
	$\frac{1}{n} = \frac{1}{1}$			
	$n^{5} = 5\sum_{r=1}^{n} r^{4} - 10 \times \frac{1}{4} n^{2} (n+1)^{2} + 10 \times \frac{1}{4} n^{2} + 10 \times \frac{1}{4} n^$	$\times \frac{1}{6}n(n+$	$+1)(2n+1)-5\times\frac{1}{2}n(n+1)+n$	MIA1
	M1: Introduces at least 2 A1: Corr	correct su ect equati	ummation formulae	
	$5\sum_{r=1}^{n} r^{4} = \frac{5}{2}n^{2}(n+1)^{2} - \frac{5}{3}n(n+1)(2n+1) + \frac{5}{2}n(n+1) + n^{5} - n = \dots$			
	$5\sum_{r=1}^{n} r^{4} = n(n+1) \left[\frac{5}{2}n(n+1) \right]$	$-\frac{5}{3}(2n+$	$+1)+\frac{5}{2}+n^3-n^2+n-1$	M1
	Makes $5\sum_{r=1}^{n} r^4$ or $\sum_{r=1}^{n} r^4$ the subject and takes out a factor of $n(n+1)$			
	$\sum_{r=1}^{n} r^{4} = \frac{1}{30} n \left(n+1 \right) \left[15n \left(n+1 \right) - 10 \left(2n+1 \right) + 15 + 6 \left(n^{3} - n^{2} + n - 1 \right) \right]$			
	$=\frac{1}{30}n(n+1)\left[6n^{3}+9n^{2}+n-1\right]=\frac{1}{30}n(n+1)(2n+1)()$			dM1
	Takes out a facto Depends on all pro-	or of $n(n + evious methods)$	(-1)(2n+1) ethod marks	
	$=\frac{1}{30}n(n+1)(2n+1)(3n^{2}+3n-1)$	cac)	A1
				(7) Total 9

Page 48 of 123

Question	Scheme	Marks
1(a)	$r = \sqrt{(-4)^2 + (-4\sqrt{3})^2} = \dots$	M1
	$\tan \theta = \frac{-4\sqrt{3}}{-4} \Longrightarrow \theta = \tan^{-1}\left(\sqrt{3}\right) \pm \pi$	M1
	$8\left(\cos\left(-\frac{2\pi}{3}\right)+i\sin\left(-\frac{2\pi}{3}\right)\right)$	A1
		(3)
(b)	$z = r e^{i\theta} \Longrightarrow \left(r e^{i\theta} \right)^3 = -4 - 4\sqrt{3} \Longrightarrow r^3 \left(e^{3i\theta} \right) = 8 e^{-i\frac{2\pi}{3}}$	
	$\Rightarrow r = \sqrt[3]{8} = 2$	M1
	$3\theta = -\frac{2\pi}{3}(+2k\pi) \Longrightarrow \theta = -\frac{2\pi}{9} + \left(\frac{2k\pi}{3}\right)$	M1
	So $z = 2e^{-\frac{8\pi}{9}i}, 2e^{-\frac{2\pi}{9}i}, 2e^{\frac{4\pi}{9}i}$	A1ft A1
		(4)
		(7 marks)

Notes:

(a)

M1: For a correct attempt at the modulus, implied by a correct modulus if no method seen and allow recovery if correct answer follows a minor slip in notation.

M1: For an attempt to find a value of θ in the correct quadrant. Accept $\tan^{-1}\left(\sqrt{3}\right) \pm \pi$ or $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \pm \pi$

May be implied by sight of an of $-\frac{2}{3}\pi, \frac{4}{3}\pi, -\frac{5}{6}\pi, \frac{7}{6}\pi$.

A1: cao as in scheme, no other solution.

(b)

M1: Applies De Moivre's Theorem and proceeds to find a value for r ie (their 8)^{$\frac{1}{3}$}

M1: Proceeds to find at least one value for θ – ie their argument/3.

Alft: At least two roots correct for their r and θ . (Must come from correct method, watch for correct roots coming from an incorrect angle due to errors.)

A1: All three correct roots and no others. Accept e.g $2e^{i-\frac{8\pi}{9}}$ as a slip in notation, so allow marks.

Question	Scheme	Marks
2	$2m^2 - 5m - 3 = 0 \Longrightarrow (2m + 1)(m - 3) = 0 \Longrightarrow m = \dots$	M1
	So C.F. is $(y_{CF} =) A e^{-\frac{1}{2}x} + B e^{3x}$	A1
	P.I. is $y_{PI} = axe^{3x}$	B1
	$\frac{dy_{PI}}{dx} = 3axe^{3x} + ae^{3x}, \frac{d^2y_{PI}}{dx^2} = 9axe^{3x} + 3ae^{3x} + 3ae^{3x}$ $\Rightarrow 2(9ax + 6a)e^{3x} - 5(3ax + a)e^{3x} - 3axe^{3x} = 2e^{3x} \Rightarrow a = \dots$	M1
	$a = \frac{2}{7}$	A1
	General solution is $y = Ae^{-\frac{1}{2}x} + Be^{3x} + \frac{2}{7}xe^{3x}$	B1ft
		(6)
		(6 marks)
Notes:		

M1: Forms and solves the auxiliary equation.

A1: Correct complementary function (no need for y = ...)

B1: Correct form for the particular integral. Accept any PI that includes axe^{3x} , so e.g. $(ax+b)e^{3x}$ is fine.

M1: Attempts to differentiate their PI twice and substitutes into the left hand side of the equation. The derivatives must be changed functions. There is no need to reach a value for the unknown(s) but their PI must contain an unknown constant.

A1: Correct value of *a* (and any other coefficients as zero). Must have had a suitable PI

B1ft: For y = their CF + their PI. Must include the y =. The PI must be a function of x that matches their initial choice of PI, with their constants substituted.

Question	Scheme	Marks
3(a)	Meet when $x^{2} - 8x = \frac{4x}{4 - x} \Rightarrow (x^{2} - 8x)(4 - x) = 4x \Rightarrow x(4x - 32 - x^{2} + 8x - 4) = 0$	M1
	(so $x = 0$ or) $x^2 - 12x + 36 = 0$	A1
	$\Rightarrow x(x-6)^2 = 0 \Rightarrow x = \dots$	M1
	Meet at (6,-12)	A1
	e.g. touch at (6,-12) as repeated root.	B1
		(5)
Alt	$\frac{d}{dx}(x^2 - 8x) = 2x - 8 \text{ and } \frac{d}{dx}\left(\frac{4x}{4 - x}\right) = \frac{4(4 - x) - 4x(-1)}{(4 - x)^2} = \frac{16}{(4 - x)^2}$	M1A1
	$2x-8 = \frac{16}{(4-x)^2} \Longrightarrow (x-4)^3 = 8 \Longrightarrow x = \dots$	M1
	Meet at (6,-12)	A1
	e.g. $6^2 - 6 \times 9 = -12$ and $\frac{4 \times 6}{4 - 6} = -12$, so curves meet at tangent at (6,-12)	B1
		(5)
(b)	$x^{2}-8x = \frac{4x}{4+x} \Rightarrow x(x-8)(4+x)-4x = 0 \Rightarrow x(x^{2}-4x-36) = 0 \Rightarrow x =$	M1
	$x = (0), 2 \pm 2\sqrt{10} \Rightarrow$ critical value is (0 and) $2 - 2\sqrt{10}$	A1
	Other C.V.'s are 0, ± 4	B1
	E.g. extremes are $x < 2 - 2\sqrt{10}$ and $x > 6$ or any two suitable ranges.	M1
	Solution is $x < 2 - 2\sqrt{10}, -4 < x < 0, 4 < x < 6, x > 6$	A1A1
		(6)
		11 marks)

Notes:

(a)

M1: Attempts to find intersection by setting equations equal and cross multiplies and factorises the *x* out or cancels.

A1: Correct quadratic reached. May be implied by solutions of 0,6 seen from the cubic (by calculator)

M1: Solves the quadratic to find roots.

A1: Obtains the correct point where the curves meet.

B1: Correct reason given for why the curves touch. Accepted "repeated root" as reason. As a minimum,

accept " $(x-6)^2 = 0$ therefore touches". Alternatively, accept discriminant = 0 shown with conclusion, or

may find gradient at both points and show equal, with conclusion.

Alt:

M1: Attempts derivatives of both curves

A1: Both derivatives correct.

M1: Sets derivatives equal and solves to find x value where gradients agree.

A1: Obtains the correct point where the curves meet.

B1: Correct value checked in both curves with conclusion that they meet at a tangent or equivalent working as per main scheme.

(b)

M1: Attempts to find the intersection of the other branch of $\frac{4x}{4-|x|}$ with x^2-8x . Allow for any attempt at

solving $\frac{4x}{4+x} = x^2 - 8x$ that reaches a value for x

A1: Correct value of $2-2\sqrt{10}$ identified. (No need to see the second root rejected for this mark.)

B1: Both 0 and ± 4 identified as critical values for the ranges needed at some stage in working.

M1: Forms at least two suitable ranges from their critical values (allow if e.g. \leq is used instead of <). Likely

to be the extreme ranges, so look for x < their $2-2\sqrt{10}$ and x > their 6. However, allow if this latter is included as part of the range x > 4 for this mark.

A1: At least two correct ranges.

A1: Fully correct answer as in scheme.

Question	Scheme		Marks
4(a)	π/2 3π/4 π/4	Completes to a closed loop with "petals" containing circle of radius 1 (whether the circle is drawn or not)	M1
	π 0 2 4 Initial line	Fully correct – 6 petals in roughly the right places, but allow if curvature is not quite smooth.	A1
	5π/4 7π/4	Circle centre <i>O</i> radius 1.	B1
			(3)
(b)	(b) $\left(\frac{1}{2}\right)\int r^2 d\theta = \left(\frac{1}{2}\right)\int \left(\frac{16-12\cos 6\theta + \frac{9}{4}\cos^2 6\theta}{4}\right)d\theta$		
	$=\frac{1}{2}\int_{0}^{2\pi} \left(16-12\cos^{2\pi}\right)^{2\pi}$	$s6\theta + \frac{9}{8}(1 + \cos 12\theta) d\theta$	M1
	$=\frac{1}{2}\left[16\theta-2\sin 6\theta\right]$	$+\frac{9}{8}\left(\theta+\frac{1}{12}\sin 12\theta\right)\Big]_{0}^{2\pi}$	M1 A1
	$A_{outer} = \frac{1}{2} \int_{0}^{2\pi} r^2 \mathrm{d}\theta = \frac{1}{2} \int_{0}^{2\pi} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \right) \right) \mathrm{d}\theta$	$\frac{9}{8}(2\pi+0)-(0)$	dM1
	So Area required is $\frac{1}{2}\left(32\pi + \frac{9\pi}{4}\right) - \pi(1)$	²) =	B1
	$=\frac{129}{8}$) - π	A1
			(7)
		(10 marks)
Notes:			

(a)

M1: Allow for any closed loop that oscillates, though may not have the correct number of "petals" but require at least 4. Need not have correct places of maximum radius.

A1: Fully correct sketch, 6 "petals" in the right places, with maximum radius between the 5 and 6 radius lines, minimum between the 2 and 3 radius lines.

B1: For a circle of radius 1 and centre O drawn.

(b)

M1: Attempts to square *r* as part of an integral for the outer curve, achieving a 3 term quadratic in $\cos 6\theta$ M1: Applies the double angle formula to the \cos^2 term from their expansion (not dependent on the first M,

but must have a cos² term). Accept $\cos^2 6\theta \rightarrow \frac{1}{2} (\pm 1 \pm \cos 12\theta)$

M1: Attempts to integrate, achieving the form $\alpha \theta + \beta \sin 6\theta + \gamma \sin 12\theta$ where $\alpha, \beta, \gamma \neq 0$

Page 53 of 123

A1: Correct integration – limits and the
$$\frac{1}{2}$$
 not needed. Look for $16\theta - 2\sin 6\theta + \frac{9}{8}\left(\theta + \frac{1}{12}\sin 12\theta\right)$ oe.

dM1: Depends on at least two of the previous M's being scored. For a correct overall strategy for the area contained in the outer loop, with an attempt at the r^2 (should be 3 term expansion). Correct appropriate limits and the $\frac{1}{2}$ should be present or implied by working, but note variations on the scheme are possible, e.g.

 $2 \times \frac{1}{2} \int_{0}^{\pi} r^2 d\theta$, in which the $2 \times \frac{1}{2}$ may be implied rather than seen.

B1: Subtracts correct area of π for inner circle

A1: cso. Check carefully the integration was correct as the sin terms disappear with the limits.

Question	Scheme	Marks
5(a)	$\frac{dy}{dx} = \frac{1}{2} \left(4 + \ln x \right)^{-\frac{1}{2}} \times \frac{1}{x}$	M1 A1
	$\frac{d^2 y}{dx^2} = \frac{1}{2} \frac{0 - \left(\sqrt{4 + \ln x} + x \times \frac{1}{2} (4 + \ln x)^{-\frac{1}{2}} \times \frac{1}{x}\right)}{x^2 (4 + \ln x)} \text{ or }$	M1
	$\frac{d^2 y}{dx^2} = -\frac{1}{4x} \left(4 + \ln x\right)^{-\frac{3}{2}} \times \frac{1}{x} - \frac{1}{x^2} \times \frac{1}{2} \left(4 + \ln x\right)^{-\frac{1}{2}} \text{ oe}$	
	$=\frac{\dots}{4x^2(4+\ln x)^{\frac{3}{2}}}=-\frac{9+2\ln x}{4x^2(4+\ln x)^{\frac{3}{2}}}*$	M1 A1*
		(5)
Alt(a)	$y^{2} = 4 + \ln x \Longrightarrow 2y \frac{dy}{dx} = \frac{1}{x}$	M1 A1
	$\Rightarrow 2y \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = -\frac{1}{x^2}$	M1
	$\Rightarrow \frac{d^2 y}{dx^2} = -\frac{1}{2yx^2} - \frac{2}{8x^2y^3} = \frac{-2y^2 - 1}{4x^2y^3}$	M1
	$= -\frac{9+2\ln x}{4x^2 (4+\ln x)^{\frac{3}{2}}} *$	A1*
		(5)
(b)	$y_{x=1} = 2, \frac{dy}{dx}\Big _{x=1} = \frac{1}{4}, \frac{d^2y}{dx^2}\Big _{x=1} = -\frac{9}{32}$	M1
	So $y = 2 + \frac{1}{4}(x-1) - \frac{1}{2!} \times \frac{9}{32}(x-1)^2 + \dots$	M1
	$= 2 + \frac{1}{4}(x-1) - \frac{9}{64}(x-1)^2 + \dots$	A1
		(3)
		(8 marks)
Notes:		
(a) M1: Attempt	ts the derivative of y using the chain rule, look for $\frac{K}{x}(4 + \ln x)^{-\frac{1}{2}}$ oe	
A1: Correct M1: Attempt	derivative. ts the second derivative of y using the product or quotient rule and chain rule. Look for	the
correct form	for their $\frac{dy}{dx}$ for the answer up to slips in coefficients.	
M1: Attempt may have be A1*: For a c	ts to simplify to get correct denominator. Must be correct work for their second derivati en errors in differentiating. orrect unsimplified second derivative, with no errors before reaching the given answer.	ve, but

Note it is a given answer so needs a suitable intermediate line with at least the formation of the correct common denominator between two fractions before reaching the answer.

Page 55 of 123

M1: Squares and uses implicit differentiation to achieve $\alpha y \frac{dy}{dx} = \frac{\beta}{x}$

A1: Correct derivative.

M1: Differentiates again using implicit differentiation and product rule. Look for $\gamma y \frac{d^2 y}{dx^2} + \delta \left(\frac{dy}{dx}\right)^2 = \frac{v}{x^2}$

M1: Makes $\frac{d^2 y}{dx^2}$ the subject and forms single fraction with denominator kx^2y^3

A1*: Obtains the correct second derivative, with no errors seen in working.

(b)

Alt:

M1: Evaluates y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1, if substitution is not seen, accept stated values for all three following attempts at the first and second derivatives as an attempt to find these.

M1: Applies Taylor's theorem with their values.

A1: Correct expression (don't be concerned if the y = is missing.)

5(b) Alt
$$y = \sqrt{4 + \ln(1 + (x - 1))} = \sqrt{4 + \left((x - 1) - \frac{(x - 1)^2}{2} + ...\right)}$$
 M1

$$=4^{\frac{1}{2}}+\frac{1}{2}\times4^{-\frac{1}{2}}\times\left((x-1)-\frac{(x-1)^{2}}{2}\right)+\frac{\frac{1}{2}\times-\frac{1}{2}}{2!}\times4^{-\frac{3}{2}}\times\left((x-1)-\ldots\right)^{2}+\ldots$$
 M1

$$=2+\frac{1}{4}(x-1)-\frac{1}{8}(x-1)^2-\frac{1}{64}(x-1)^2+\ldots=2+\frac{1}{4}(x-1)-\frac{9}{64}(x-1)^2+\ldots$$
A1
(3)

Notes:

M1: Writes the *x* as 1+(x-1) and attempts to expand using the Maclaurin series for $\ln(1+x)$ with correct expansion of $\ln(1+(x-1))$.

M1: Attempts a binomial expansion using their ln expansion. Alternatively, may gain this before the first M

if they expand using ln's, e.g. $4^{\frac{1}{2}} + \frac{1}{2}4^{-\frac{1}{2}}\ln x + \frac{\frac{1}{2}\times\frac{-1}{2}}{2!}(\ln x)^2$

A1: Fully correct expression (don't be concerned if the y = is missing.)

Question	Scheme	Marks
6(a)	Let $x = \arctan A$ and $y = \arctan B$ then $\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$	D1
	Or $\tan(\arctan A - \arctan B) = \frac{\tan \arctan A - \tan \arctan B}{1 + \tan \arctan A \tan \arctan B}$	DI
	$\tan(x-y) = \frac{A-B}{1+AB} \Longrightarrow x-y = \arctan\left(\frac{A-B}{1+AB}\right)$	M1
	So $\arctan A - \arctan B = x - y = \arctan\left(\frac{A - B}{1 + AB}\right)^*$	A1*
		(3)
(b)	$A = r + 2, B = r \Longrightarrow \left(\frac{A - B}{1 + AB}\right) = \frac{r + 2 - r}{1 + (r + 2)r} = \frac{2}{\dots}$	M1
	$=\frac{2}{r^2+2r+1}=\frac{2}{(1+r)^2}*$	A1*
		(2)
(c)	$\sum_{r=1}^{n} \arctan\left(\frac{2}{(1+r)^{2}}\right) = \sum_{r=1}^{n} \left(\arctan(r+2) - \arctan(r)\right) = \dots$	M1
	$= (\arctan 3 - \arctan 1) + (\arctan 4 - \arctan 2) + (\arctan 5 - \arctan 3) + \dots$	A 1
	+ $\left(\arctan(n+1) - \arctan(n-1)\right)$ + $\left(\arctan(n+2) - \arctan(n)\right)$	AI
	$= \arctan(n+2) + \arctan(n+1) - \arctan 2 - \arctan 1$	M1
	$= \arctan(n+2) + \arctan(n+1) - \arctan 2 - \frac{\pi}{4}$	A1
		(4)
(d)	As $n \to \infty$, $\arctan n \to \frac{\pi}{2}$	M1
	So $\sum_{r=1}^{\infty} \arctan\left(\frac{2}{(1+r)^2}\right) = \frac{\pi}{2} + \frac{\pi}{2} - \arctan 2 - \frac{\pi}{4} = \frac{3\pi}{4} - \arctan 2$	A1
		(2)
	(1)	1 marks)

Page 57 of 123

Notes:

B1: For any correct statement or use of the compound angle formula with **consistent variables** of *x* and *y* or arctan *A* and arctan *B*. Can be either way round (may be working in reverse).

M1: Attempts to apply tan or arctan on an appropriate identity with either x and y or arctan A and arctan B.

Should have $\frac{\tan x \pm \tan y}{1 \pm \tan x \tan y}$ (oe with arctans or *A*'s and *B*'s) as part of the identity, and allow if they change

between *x*,*y* and arctan's during the step.

A1*: Must have scored the B and M marks. Replaces $\tan x$ and $\tan y$ by A and B respectively if appropriate with fully correct work leading to the given result and conclusion made and no erroneous statements.

Note: for working in reverse e.g.

Let $x = \arctan A$ and $y = \arctan B$ then

$$\arctan A - \arctan B = \arctan\left(\frac{A-B}{1+AB}\right) \Leftrightarrow x - y = \arctan\left(\frac{A-B}{1+AB}\right) \Leftrightarrow \tan(x-y) = \frac{A-B}{1+AB}$$
 Scores M1
$$\tan x - \tan y$$

 $\Leftrightarrow \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ Scores B1 – but enter as the first mark.

Which is the correct identity for tan(x - y) hence the result is true. Score A1 The conclusion here must include reference to the identity being true, e.g. with a tick, or statement, before deducing the final result.

(b)

M1: Substitutes in A = r + 2 and B = r and simplifies the numerator to 2 (may be implied)

A1*: Expands the denominator (must be seen) and then factorises to the given result, no errors seen.

(c)

M1: Applies the result of (a) to the series – allow if they have a different A and B due to error.

A1: At least first three and final two brackets of terms correctly written out – must be clear enough to show cancelling.

M1: Extracts the non-cancelling terms.

A1: Correct result with no errors seen – must see the arctan 1 before reaching $\frac{\pi}{4}$.

Note: Insufficient terms to gain the first A is not an error, so M1A0M1A1 is possible if e.g. only the first two terms are shown. Condone missing brackets on arctan n + 1 etc.

(d)

M1: Identifies the value arctan tends towards as *n* increase. Need not see limits, as long as the value is identified.

A1: Correct answer.

Question	Scheme	Marks
7(a)	$z = (0+)iy \Longrightarrow w = \frac{(1+i)iy + 2(1-i)}{iy - i} = \frac{-y + 2 + i(y-2)}{i(y-1)} = \frac{y - 2 + i(y-2)}{y - 1}$	M1
	$\Rightarrow u = v \text{ or } \operatorname{Im} w = \operatorname{Re} w$	A1
		(2)
(b)	$w = \frac{(1+i)z + 2(1-i)}{z-i} \Longrightarrow z = \frac{2(1-i) + iw}{w-1-i} = \frac{2-v + i(u-2)}{u-1+i(v-1)}$	M1
	$\frac{2 - v + i(u - 2)}{u - 1 + i(v - 1)} \times \frac{u - 1 - i(v - 1)}{u - 1 - i(v - 1)}$ = $\frac{(2 - v)(u - 1) + (u - 2)(v - 1) + i((u - 1)(u - 2) - (2 - v)(v - 1))}{}$ Im $z = 0 \Rightarrow (u - 1)(u - 2) - (2 - v)(v - 1) = 0$	M1
	$\Rightarrow (u-1)(u-2) - (2-v)(v-1) = 0 \Rightarrow u^2 - 3u + 2 + v^2 - 3v + 2 = 0$	A1
	$\Rightarrow \left(u - \frac{3}{2}\right)^2 + \left(v - \frac{3}{2}\right)^2 = \frac{1}{2}$	M1
	Centre is $\frac{3}{2} + \frac{3}{2}i$ and radius is $\frac{\sqrt{2}}{2}$	A1A1
		(6)
		8 marks)

Notes:

(a)

M1: Correct method to find the equation of the image line – e.g. substitutes in z = iy and rearranges to Cartesian form. May use x + iy and later set x = 0. Alternatively, may start as in (b) and then set

 $(2-v)(u-1) + (u-2)(v-1) = 0 \Longrightarrow 2u - v - uv - 2 + uv + 2 - 2v - u = 0$ etc.

Another alternative is to find the image points of two points on the imaginary axis and to find the line from these.

A1: For u = v oe equation. Accept Im w = Re w, or x = y if they have set w = x + iy. (b)

Note: Accept work done in part (a) that is relevant to part (b) for credit if appropriate.

M1: Makes z the subject, substitutes w = u + iv into the equation.

M1: Multiplies the numerator by the complex conjugate of denominator and extracts the imaginary part and sets it equal to zero to form an equation in u and v. Do not be concerned about the denominator.

A1: Correct equation in *u* and *v* for the circle.

M1: Completes the square on their equation to extract centre and radius. Not dependent, so allow as long as a suitable equation in u and v has been reached.

A1: Correct centre or correct radius. Accept either $\frac{3}{2} + \frac{3}{2}i$ or $\left(\frac{3}{2}, \frac{3}{2}\right)$ for the centre.

A1: Correct centre and correct radius. As above. Accept equivalent forms (need not be simplified) Allow the final two A marks if all that is wrong is an error in the denominator. (M1M0A0M1A1A1 is possible.)

Page 59 of 123

7

7(b) Alt1	Real axis is $z = x(+0i)$, so $u + iv = \frac{(1+i)x + 2(1-i)}{x-i} = \frac{(1+i)x + 2(1-i)}{x-i} \times \frac{x+i}{x+i} = \frac{(1+i)x^2 + 2x(1-i) + (i-1)x + 2(i+1)}{x^2 + 1} = \frac{x^2 + x + 2 + i(x^2 - x + 2)}{x^2 + 1}$	M1
	$u = \frac{x^2 + x + 2}{x^2 + 1} = 1 + \frac{x + 1}{x^2 + 1}; v = \frac{x^2 - x + 2}{x^2 + 1} = 1 - \frac{x - 1}{x^2 + 1} \Longrightarrow u + v = 2 + \frac{2}{x^2 + 1}$ $\Rightarrow (u - 1)^2 + (v - 1)^2 = \frac{(x + 1)^2 + (x - 1)^2}{(x^2 + 1)^2} = \frac{2x^2 + 2}{(x^2 + 1)^2} = \frac{2}{x^2 + 1} = u + v - 2$	M1 A1
	$\Rightarrow \left(u - \frac{3}{2}\right)^2 + \left(v - \frac{3}{2}\right)^2 = \frac{1}{2}$	M1
	Centre is $\frac{3}{2} + \frac{3}{2}i$ and radius is $\frac{\sqrt{2}}{2}$	A1A1
		(6)

Notes

M1: Sets z = x in the equation (or uses x + iy and later sets y = 0) and multiplies by complex conjugate.

M1: Eliminates *x* from the equations (one suitable method is shown, others are possible).

A1: Correct equation in *u* and *v* for the circle.

M1: Completes the square on their equation to extract centre and radius

A1: Correct centre or correct radius. Accept either
$$\frac{3}{2} + \frac{3}{2}i$$
 or $\left(\frac{3}{2}, \frac{3}{2}\right)$ for the centre.

A1: Correct centre and correct radius. As above.

7(b)	Unlikely to be seen	
Alt 2	As i and -i are inverse points of the line, so their images are inverse points of the	
	circle.	M1
	$i \rightarrow \infty, -i \rightarrow \frac{-i+1+2-2i}{-2i} = \frac{3}{2} + \frac{3}{2}i$	M1
	Hence (as ∞ is the other point) the centre is $\frac{3}{2} + \frac{3}{2}i$	A1
	$0 \rightarrow \frac{2-2i}{-i} = 2+2i \text{So radius is } \left \frac{3}{2} + \frac{3}{2}i - 2 - 2i\right = \dots$	M1 A1
	$=\frac{\sqrt{2}}{2}$	A1
	Z	
(b) Alt 3	M1: Attempt to find images of three different points on the real axis.	
	M1: Correct method to find centre from three points – e.g. intersection of two	
	perpendicular bisectors.	
	A1: Correct equation for the centre.	
	M1: Uses centre and one point to find radius.	
	A1: Correct centre	
	A1: Correct radius	

Page 60 of 123

Question	Scheme	
8(a)	(a) $\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} - 2$	
	$\frac{dy}{dx} + 2yx(y - 4x) = 2 - 8x^3 \rightarrow \frac{dv}{dx} + 2 + 2(v + 2x)x(v + 2x - 4x) = 2 - 8x^3$	
	$\rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} + 2 + 2x(v^2 - 4x^2) = 2 - 8x^3$	M1
	$\rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = -2xv^2 *$	A1*
		(4)
(b)	$\frac{1}{v^2}\frac{\mathrm{d}v}{\mathrm{d}x} = -2x \Longrightarrow \int v^{-2} \mathrm{d}v = -2\int x \mathrm{d}x$	B1
	$\Rightarrow \frac{v^{-1}}{-1} = -2\frac{x^2}{2}(+c)$	M1
	$\Rightarrow \frac{1}{v} = x^2 + c$	A1
	$\Rightarrow v = \frac{1}{x^2 + c}$	A1
(c)	$y = 2x + \frac{1}{x^2 + c}$	
		(1)
(d)	$-1 = 2 \times -1 + \frac{1}{1+c} \Longrightarrow c = \dots$	
	$y = 2x + \frac{1}{x^2}$	A1
	Attempts the sketch for their equation, with at least one of - One branch correct - Vertical asymptote for their equation - Long term behaviour tends to infinity - Minimum in quadrant 1	M1
	Fully correct shape, two branches tending to infinity as x tends to infinity both directions, with minimum in first quadrant No need for oblique asymptote marked.	A1
	$y_{x=0}$ y-axis a vertical asymptote labelled	B1ft
		(5)
		4 marks)
Notes:		
(a)		

Page 61 of 123

B1: Correct differentiation of the given transformation. Allow any correct connecting derivative, e.g.

 $\frac{dy}{dv} = 1 + 2\frac{dx}{dv}$ or $\frac{dv}{dy} = 1 - 2\frac{dx}{dy}$

M1: For a complete substitution into the equation (*I*).

M1: Applies difference of squares, or completely expands brackets of the left hand side. Alternatively, may rearrange and factorise to give $8x^2y - 2xy^2 - 8x^3 = -2x(y^2 - 4xy + 4x^2) = -2x(y - 2x)^2$ before

substituting.

A1*: Reaches the given answer with no errors seen.

(b)

B1: Correct separation of the variables.

M1: Attempts the integration, usual rule, power increased by 1 on at least one term. No need for +c for the method.

A1: Correct integration including the +c

A1: Correct expression for *v*.

(c)

B1: Follow through their answer to (b), so y = 2x + their v from (b)

(d)

M1: Uses the point (-1, -1) to find a value for the constant in their equation. Must have had a constant of integration in their equation to score this mark.

A1: Correct equation for y following a correct general solution. Withhold this mark for $y = 2x + \frac{1}{x^2} + c$

leading to the correct equation.

Note: the following three marks may be scored from a correct equation that arose from having no constant in

(b) or from $y = 2x + \frac{1}{x^2} + c$ (which gives the same equation).

M1: Attempts a sketch for their curve. See scheme. Look for at least one of the key features for their equation shown.

A1: Correct shape, two branches tending to infinity as *x* tends to infinity both directions with a minimum in first quadrant. Not a follow through mark, so must be the correct curve.

B1ft: Correct vertical asymptote at x = 0. Need not be labelled if it is clearly the *y*-axis. Follow through their equation as long as there is at least one vertical asymptote (ie for a negative *c* they need a pair of asymptotes symmetric about the *y*-axis).

Page 62 of 123

Question Number	Scheme	Marks	
1 (a)	$2n+1 = A(n+1)^2 + Bn^2 \implies 2n+1 = An^2 + 2An + 1 + Bn^2$		
	$A = 1$ $B = -1$ or $\frac{1}{n^2} - \frac{1}{(n+1)^2}$	B1 (1)	
(b)	$\sum_{r=5}^{n} \frac{2r+1}{r^2(r+1)^2} = \sum_{r=5}^{n} \left(\frac{1}{r^2} - \frac{1}{(r+1)^2} \right)$ $= \left(\frac{1}{5^2} - \frac{1}{5^2} \right) + \left(\frac{1}{5^2} - \frac{1}{7^2} \right) + \dots \left(\frac{1}{5^2} - \frac{1}{(n+1)^2} \right)$	M1	
	$\sum_{r=5}^{n} \frac{2r+1}{r^2(r+1)^2} = \frac{1}{5^2} - \frac{1}{(n+1)^2}$	A1	
	$=\frac{n^2+2n+1-25}{25(n+1)^2}=\frac{n^2+2n-24}{25(n+1)^2}$	M1A1 (4)	
		[5]	
	Notes		
(a) B1	Both values correct with or without working seen, may be in the expression. Ignore working.	incorrect	
(b) M1	Show sufficient terms to demonstrate the cancelling. Require at least one cancelling term seen. Must start at $r = 5$ - M0 if starting at e.g $r = 1$ unless there is a full process to complete the difference method (same condition) and apply $f(n) - f(4)$		
A1 M1	Extract the two correct terms, or in the Alt obtains a correct overall expression. Write the terms with a (non-zero) common denominator with at least numerator correct for their terms. Not dependent - may be scored following M0 if no cancelling terms were shown, but must have had exactly two terms to combine from differences		
A1	Correct answer in the required form or accept correct values stated following an uns (Allow as long as correct terms were extracted, even if no cancelling terms were she Note: this means M0A0M1A1 can be scored for answers which show only the last t scheme with no cancelling process shown. Note: if e.g. r is used in place of n allow full marks if recovered, but A0 if left in ter	simplified form. own.) wo lines of the rms of <i>r</i> .	
Alt (b) for first	$\sum_{r=1}^{n} \frac{2r+1}{r^2(r+1)^2} = \sum_{r=1}^{n} \left(\frac{1}{r^2} - \frac{1}{(r+1)^2} \right)$		
marks	$= \left(\frac{1}{1^2} - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{3^2}\right) + \dots \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) = 1 - \frac{1}{(n+1)^2}$		
	$\rightarrow \sum_{r=5}^{n} \frac{2r+1}{r^2(r+1)^2} = 1 - \frac{1}{(n+1)^2} - \left(1 - \frac{1}{25}\right) \left(=\frac{n^2 + 2n}{(n+1)^2} - \frac{24}{25}\right)$	M1A1	

Page 63 of 123

Question Number	Scheme	Marks	
2 (a)	E.g. $(x+3)(x-5) = 9 \implies x^2 - 2x - 24 = 0 \implies x =$		
	OR $(x-5)(x+3)^2 - 9(x+3) = 0 \implies (x+3)(x-6)(x+4) = 0 \implies x =$	M1	
	OR $\frac{(x+3)(x-5)-9}{x+3} < 0 \Rightarrow x^2 - 2x - 24 = 0 \Rightarrow x =$		
	CV_{cv} 6 $4:2$	A 1. D 1	
	CVS. 0, -4, -5	AI;BI	
	x < -4, -3 < x < 6	dM1A1A1	
	OR: $x \in (-3, 6) \cup (-\infty, -4)$ or any equivalent notation.	(6)	
(b)	$x < 6$, $x \neq -3$ or any equivalent notation.	B1ftB1 (2)	
		[8]	
	Notes		
(a) M1	For a correct algebraic method to find the intersection points of $y = x - 5$ and $y = \frac{9}{x + 2}$. May set		
	these equal and form a quadratic and solve. $\lambda \pm S$		
	May multiply through by $(x+3)^2$ and collect on one side or use any other valid method		
	Eg work from $\frac{(x+3)(x+2)-12}{x+3} > 0$ Answers only from a calculator score M0. Must reach at		
	least a quadratic or cubic before answers given. Do not be concerned with the equality or inequality for this mark.		
A1 B1	For 6, -4 obtained via a valid algebraic method.		
dM1	Obtaining (any) inequalities using all of their critical values and no other numbers.		
A1	For at least one correct interval allowing for or " used instead of < and >		
Alcso	Both correct ranges and no extras. Use of or ,, scores A0. May be written in set notation, and all work should have been correct so penalise if incorrect inequalities method was used at the start. Accept $x < -4$ and/or $-3 < x < 6$ with "and" or "or"		
	For candidates who draw a sketch graph and follow with the cvs without any algebra shown only the B mark is available. Those who use some algebra after their graph may gain marks as earned (possibly all)		
(b) D164			
ви	For the " $x < 6$ " in some form with the possible exception of the CVs from (a). Allow	w x,, 6 if	
	already penalised in (a). It is essentially for realising all the extra (valid) values less solutions while retaining all their given solutions. If only the CVs themselves are ex Follow through their answer to (a).	than -3 are accluded allow B1.	
B1	Fully correct answer. May give as intervals $x < -3, -3 < x < 6$		

Question Number	Scheme	Marks
3	$w = \frac{z}{z + 4i}$	
	$w(z+4i) = z \Longrightarrow z(1-w) = 4iw$ or $z = \frac{4iw}{1-w}$ oe	M1A1
	$ z = 3 \left \frac{4\mathrm{i}w}{1-w}\right = 3$	dM1
	4iw = 3 1-w	
	$w = u + iv$ $16(u^{2} + v^{2}) = 9((1-u)^{2} + v^{2})$	ddM1A1
	$16u^2 + 16v^2 = 9(1 - 2u + u^2 + v^2)$	
	$7u^2 + 7v^2 + 18u - 9 = 0$	
	$\left(u + \frac{9}{7}\right)^2 + v^2 = \frac{144}{49}$	dddM1
	Centre $\left(-\frac{9}{7},0\right)$ Radius $\frac{12}{7}$	A1A1 (8)
	Notes	
(a) M1 A1 dM1	re-arrange to $z = \dots$ or an expression $z(\alpha w + \beta) = \gamma w + \delta$ correct result dep (on first M1) using $ z = 3$ with their previous result	
ddM1	dep (on both previous M marks) use $w = u + iv$ (or $w = x + iy$ or any other pair of	f letters) and
A1 dddM1 A1 A1	attempts the squares of the moduli. The i's must be dealt with correctly, but allow e.g. $3^2 \rightarrow 3$ for a correct equation quadratic in <i>u</i> and <i>v</i> after squaring (including squaring coefficients). dep (on all previous M marks) re-arrange to the completed square form of the equation of a circle (same coeffs for the squared terms) or implied by a correct centre or radius following a correct equation with terms gathered. either correct and exact. both correct and exact.	
	Note: Allow recovery for the last three A's if all that is incorrect in is the wrong sign expression for z, ie $z = \frac{-4iw}{1-w}$	n in their
	If you see alternative methods, e.g. via Apollonian approaches or attempts to use $z =$ original equation, that you feel are worthy of credit please use Review to consult yo	=x + iy in the our team leader.

Question Number	Scheme	Marks	
4	$\frac{\mathrm{d}y}{\mathrm{d}x} - 3y\tan x = \mathrm{e}^{4x}\sec^3 x$		
(a)	$e^{-3\int \tan x dx} = e^{-3\ln \sec x} = \sec^{-3} x \text{ or } \cos^{3} x$	M1A1	
	$\cos^3 x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y \sin x \cos^2 x = \mathrm{e}^{4x} \cos^3 x \sec^3 x$		
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\cos^3 x) = \mathrm{e}^{4x} \Longrightarrow y\cos^3 x = \int \mathrm{e}^{4x} \mathrm{d}x$	M1	
	$y\cos^3 x = \frac{1}{4}e^{4x} (+c)$	M1	
	$y = \left(\frac{1}{4}e^{4x} + c\right)\sec^3 x \text{or} y = \left(\frac{1}{4}e^{4x} + c\right)\cos^{-3} x \text{oe}$	A1	
		(5)	
(b)	$y = 4, x = 0 4 = \left(\frac{1}{4} + c\right)$		
	$c = \frac{15}{4}$	M1	
	$y = \frac{1}{4} (e^{4x} + 15) \sec^3 x$ or $\frac{1}{4} (e^{4x} + 15) \cos^{-3} x$ oe	A1	
		(2)	
	Notes	[/]	
(a) M1	Attempt the integrating factor including integration of (3) tan x : ln cos or ln sec	seen	
A1	Attempt the integrating factor, including integration of (-3)tan x; in cos or lin sec seen		
M1	Multiply the equation by the integrating factor and integrate the LHS. Look for		
	$v \times \text{their IF} = \int (e^{4x} \sec^3 x \times \text{their IF}) dx$ (condone missing dx)		
M1	Integrate RHS, constant not needed. Must be a function they can integrate and a val	id attempt (e.g.	
A1	allowing coefficient slips).		
(b)	control result in the domanded rollin, morading y, constant moraded		
M1	Use the given initial conditions to obtain a value for c	Use the given initial conditions to obtain a value for <i>c</i>	
AI	in the form $v \cos^3 x =$ or $4v \cos^3 x =$	i iii (a). May be	

Page 66 of 123

Question Number	Scheme	Marks
5.	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{2}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2$	
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ seen	B1
	$\frac{\mathrm{d}^{3} y}{\mathrm{d}x^{3}} = -\frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + \frac{2}{y^{2}} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{3}$	M1A1A1
		(4)
ALT:	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 \to 2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\mathrm{seen}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) + y\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 4\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1 <u>A1</u>
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = \frac{1}{y} \left(-5\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2 \right) \frac{\mathrm{d}y}{\mathrm{d}x}$	A1 (4)
(b)	At $x = 0$ $\frac{d^2 y}{dx^2} = \frac{1}{2} \left(-2 \times (1)^2 + 4 \right) = 1$	B1
	$\frac{d^3 y}{dx^3} = \frac{1}{2} \left(-5 \times 1 + 2 \right) \times 1 = \frac{-3}{2}$	M1
	$(y=)2+x+(1)\frac{x^2}{2!}+(\frac{-3}{2})\frac{x^3}{3!}+$	M1
	$y = 2 + x + \frac{1}{2}x^2 - \frac{1}{4}x^3 + \dots$	A1 (4)
		[8]
	Notes	
(a)		
	$(dv)d^2v$	
B1	$\left(\frac{dy}{dx}\right)\frac{dy}{dx^2}$ seen in the differentiation	
M1	Divide equation by y and differentiate wrt x chain and product rules needed. LHS co	orrect
A1	Either RHS term correct. Need not be simplified.	
Al ALT	Both RHS terms correct. Need not be simplified.	
B1	$\left(\frac{dy}{dy}\right)^2 \rightarrow 2\left(\frac{dy}{dy}\right)\frac{d^2y}{dy^2}$ correct differentiation of middle term.	
M1	Differentiate before dividing. Product rule must be used	
A1	Correct differentiation of $y \frac{d^2 y}{dx^2}$ and $-2y$	
A1	Rearrange to a correct expression for $\frac{d^3y}{dx^3}$ (need not be simplified)	

Page 67 of 123

	Notes
(b)	
B1	Correct value for $\frac{d^2 y}{dx^2}$. May be implied by the term in their expansion.
M1	Use their expression from (a) to obtain a value for $\frac{d^3 y}{dx^3}$ (May be implied - you may need to check if
	their value follows from their expression in (a).)
M1	Taylor's series formed using their values for the derivatives, accept 2! or 2 and 3! or 6 Correct series must start $y = -$ or allow $f(x) = -$ as longs $y = f(x)$ has been defined in the question
A1	Must come from a correct expression for $\frac{d^3y}{dx^3}$

Question Number	Scheme	Marks
6 (a)	$\frac{d(r\sin\theta)}{d\theta} = 4a\cos\theta + 4a\cos^2\theta - 4a\sin^2\theta \text{ or } 4a\cos\theta + 4a\cos2\theta \text{ oe}$ (Or allow $\frac{d(r\cos\theta)}{d\theta} = -4a\sin\theta - 8a\cos\theta\sin\theta \text{ or } -4a\sin\theta - 4a\sin2\theta$)	M1
	E.g. $4a\cos\theta + 4a\cos^2\theta - 4a\sin^2\theta = 0 \Rightarrow \cos\theta + \cos^2\theta - (1 - \cos^2\theta) = 0$	M1
	$2\cos^2\theta + \cos\theta - 1 = 0$ terms in any order	A1
	$(2\cos\theta - 1)(\cos\theta + 1) = 0 \Longrightarrow \cos\theta = \dots$	ddM1
	$\left(\cos\theta = \frac{1}{2} \Rightarrow\right)\theta = \frac{\pi}{3} \left(\theta = \pi \text{ need not be seen}\right)$	A1
	$r = 4a \times \frac{3}{2} = 6a$	A1 (6)
(b)	Area $= \frac{1}{2} \int r^2 d\theta = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 16a^2 (1 + \cos\theta)^2 d\theta$	
	$=\frac{16a^2}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(1+2\cos\theta+\cos^2\theta\right)\mathrm{d}\theta$	M1
	$=8a^2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)d\theta$	M1
	$=8a^{2}\left[\theta+2\sin\theta+\frac{1}{2}\left(\frac{1}{2}\sin 2\theta+\theta\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	dM1A1
	$8a^{2}\left[\frac{\pi}{3} + \sqrt{3} + \frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{6} - \left(\frac{\pi}{6} + 1 + \frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{12}\right)\right]$	A1
	$8a^2\left[\frac{\pi}{4} + \sqrt{3} - 1\right]$	
	Area $R = 8a^2 \left[\frac{\pi}{4} + \sqrt{3} - 1 \right] - 6a^2 \left(1 + \frac{\sqrt{3}}{2} \right) = a^2 \left(2\pi + 5\sqrt{3} - 14 \right)$	M1A1 (7)
		[13]
	Notes	
(a) M1	Attempt the differentiation of $r \sin \theta$ using product rule or $\sin 2\theta = 2 \sin \theta \cos \theta$	OR for this mark
	only allow differentiation of $r \cos \theta$, inc use of product rule, chain rule or $\cos^2 \theta =$	$\frac{1}{2}(1\pm\cos 2\theta)$
M1 A1 ddM1 A1	Allow errors in coefficients as long as the form is correct. Sets their derivative of $r \sin \theta$ equal to zero and achieves a quadratic expression in Correct 3 term quadratic in $\cos \theta$ (any multiple, including <i>a</i>) Dep on both M marks. Solve their quadratic (usual rules) giving one or two roots Correct quadratic solved to give $\theta = \frac{\pi}{3}$	$\cos \theta$

Page 69 of 123

	Notes
A1*	Correct <i>r</i> obtained from an intermediate step. Accept as shown in scheme, or
	$r = 4a\left(1 + \cos\frac{\pi}{3}\right) = 6a$ or equivalent in stages. No need to see coordinates together in brackets
(b)	Note : first 4 marks of (b) do not require limits.
M1	Use of correct area formula, $\frac{1}{2}$ may be seen later, inc squaring the bracket to obtain 3
	terms - limits need not be shown.
M1	Use double angle formula (formula to be of form $\cos^2 \theta = \pm \frac{1}{2} (\cos 2\theta \pm 1)$) to obtain an
	integrable function - limits need not be shown, $\frac{1}{2}$ from area formula may be missing,
dM1 A1	Attempt the integration $\cos \theta \rightarrow \pm k \sin \theta$ and $\cos 2\theta \rightarrow \pm m \sin 2\theta$ - limits not needed – dep on 2 nd M mark but not the first. Note if only two terms arise from squaring allow for $\cos 2\theta \rightarrow \pm m \sin 2\theta$ Correct integration – substitution of limits not required (NB Not follow through)
A1	Include the $\frac{1}{2}$ and substitute the correct limits in a correct integral. Note may be attempted via
	integral from 0 to $\frac{\pi}{3}$ minus integral from 0 to $\frac{\pi}{6}$ - but attempts at sector formula for the latter is A0.
M1	Attempt the area of the triangle - accept valid attempt even if not subtracted from area. E.g. attempts
	$\frac{1}{2}OA.OB\sin\frac{\pi}{6}$
A1	Correct final answer in the demanded the form.

Question Number	Scheme	Marks	
7(a)	$\frac{dy}{dx} = v + x \frac{dv}{dx} \text{ or } \frac{dv}{dx} = x^{-1} \frac{dy}{dx} - x^{-2}y \text{ (oe)}$	M1A1	
	$\frac{d^2 y}{dx^2} = \frac{dv}{dx} + \frac{dv}{dx} + x\frac{d^2 v}{dx^2} \text{ or } \frac{d^2 v}{dx^2} = -x^{-2}\frac{dy}{dx} + x^{-1}\frac{d^2 y}{dx^2} + 2x^{-3}y - x^{-2}\frac{dy}{dx} \text{ (oe)}$	dM1A1	
	$3\left(2\frac{\mathrm{d}v}{\mathrm{d}x} + x\frac{\mathrm{d}^2v}{\mathrm{d}x^2}\right) - \frac{6}{x}\left(v + x\frac{\mathrm{d}v}{\mathrm{d}x}\right) + \frac{6xv}{x^2} + 3xv = x^2 (\text{oe in reverse})$	ddM1	
	$3x\frac{d^2v}{dx^2} + 6\frac{dv}{dx} - 6\frac{dv}{dx} - \frac{6}{x}v + \frac{6v}{x} + 3xv = x^2$		
	$3\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 3v = x *$	A1 * (6)	
(b)	$22^{2} + 2 = 0$ so $2 = \pm i$	M1	
(0)	$3\lambda + 5 = 0 \text{so} \lambda = \pm 1$	W11	
	$(V =) A e^{-x} + B e^{-x}$ of $(V =) C \cos x + D \sin x$	AI	
	P.1: Try $(v=)kx$ $(+l)$	B1	
	$\frac{\mathrm{d}v}{\mathrm{d}x} = k \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = 0$		
	$3 \times 0 + 3(kx(+l)) = x$	M1	
	$k = \frac{1}{3} (l = 0)$		
	$v = Ae^{ix} + Be^{-ix} + \frac{1}{3}x$ or $v = C\cos x + D\sin x + \frac{1}{3}x$	A1	
	$y = x \left(A e^{ix} + B e^{-ix} + \frac{1}{3}x \right) \text{or} y = x \left(C \cos x + D \sin x + \frac{1}{3}x \right)$	B1ft (6)	
		[12]	
	Notes		
(a)			
M1	Attempt to find a relevant first derivative from $y = xv$ e.g to get $\frac{dy}{dx}$ or $\frac{dv}{dx}$ - prod	duct or quotient	
	rule must be used. Methods via $\frac{d_{}}{dv}$ would require a chain rule to reach a relevant d	erivative.	
A1	Correct derivative	Correct derivative	
dM1	Attempt to differentiate their $\frac{dy}{dx}$ or $\frac{dv}{dx}$ to obtain an expression for $\frac{d^2y}{dx^2}$ or $\frac{d^2v}{dx^2}$	- product rule	
A1	must be used. Depends on the previous M mark Correct expression for $\frac{d^2 y}{dx^2}$ or $\frac{d^2 v}{dx^2}$		

Page 71 of 123

	Notes		
ddM1	Depends on both previous M marks. Substitute their $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ and $y = xv$ in the original		
	equation to obtain a differential equation in v and x. Alternatively substitute their $\frac{dv}{dx}$ and $\frac{d^2v}{dx^2}$ and		
	$v = \frac{y}{x}$ into equation (II) to obtain a differential equation in y and x		
A1*	Obtain the given equation/original equation with no errors in the working. There must be at least one step shown between the initial substitution and the result		
(b)			
M1	Forms correct AE and attempts to solve (accept $3m^2 + 3$ (=0) leading to any value(s)).		
Al D1	Correct CF.		
DI M1	Suitable form for P1 (le one that include kx)		
1711	Differentiate their PI twice and substitute their derivatives in the equation $3\frac{d^2v}{dx^2} + 3v = x$		
A1	Obtain the correct result (either form). Must be $v =$		
B1ft	Reverse the substitution. Follow through their previous line. Must be $y =$		
Question Number	Scheme	Ma	arks
--------------------	---	------	------
8 (a)	$(\cos\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$	B1	
	$= \cos^{5}\theta + 5\cos^{4}(i\sin\theta) + \frac{5\times4}{2!}\cos^{3}\theta(i\sin\theta)^{2}$ $+ \frac{5\times4\times3}{3!}\cos^{2}\theta(i\sin\theta)^{3} + \frac{5\times4\times3\times2}{4!}\cos\theta(i\sin\theta)^{4} + (i\sin\theta)^{5}$	M1	
	$=\cos^{5}\theta + \frac{5i\cos^{4}\theta\sin\theta}{10} - 10\cos^{3}\theta\sin^{2}\theta - \frac{10i\cos^{2}\theta\sin^{3}\theta}{10} + 5\cos\theta\sin^{4}\theta + \frac{1}{10}\sin^{5}\theta$	A1	
	$\sin 5\theta = 5\cos^4\theta \sin\theta - 10\cos^2\theta \sin^3\theta + \sin^5\theta$		
	$=5(1-\sin^2\theta)^2\sin\theta-10(1-\sin^2\theta)\sin^3\theta+\sin^5\theta\frac{dy}{dx}$	M1	
	$=5(1-2\sin^2\theta+\sin^4\theta)\sin\theta-10(1-\sin^2\theta)\sin^3\theta+\sin^5\theta$		
	$\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta \qquad *$	A1*	(5)
	Alternative: Using " $z - \frac{1}{z}$ " $z^5 - \frac{1}{z^5} = 2i\sin 5\theta$ oe	B1	
	Binomial expansion of $\left(z - \frac{1}{z}\right)^5$	M1	
	$32\sin^5\theta = 2\sin 5\theta - 10\sin 3\theta + 20\sin \theta$	A1	
	Uses double angle formulae etc to obtain $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$ and then use it in their expansion	M1	
	$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta \qquad *$	A1*	(5)
(b)	Let $x = \sin \theta$ $16x^5 - 20x^3 + 5x = -\frac{1}{5} \implies \sin 5\theta =$	M1A1	
	$\Rightarrow \theta = \frac{1}{5} \sin^{-1} \left(\pm \frac{1}{5} \right) = 38.306 \text{ (or } -2.307, 69.692.110.306, 141.693, 182.306)}$	dM1	
	(or in radians -0.04020.6685, 1.216,1.925, 2.473)		
	Two of (awrt) $x = \sin \theta = -0.963, -0.555, -0.040, 0.620, 0.938$	Al	(7)
	All of (awr) $x = \sin \theta = -0.905, -0.0305, -0.040, 0.020, 0.938$	AI	(5)
(c)	$\int_{0}^{\frac{\pi}{4}} \left(4\sin^{5}\theta - 5\sin^{3}\theta - 6\sin\theta\right) d\theta = \left(\int_{0}^{\frac{\pi}{4}} \frac{1}{4} \left(\sin 5\theta - 5\sin\theta\right) - 6\sin\theta\right) d\theta$	M1	
	$= \left[\frac{1}{4}\left(-\frac{1}{5}\cos 5\theta + 5\cos \theta\right) + 6\cos \theta\right]_{0}^{\frac{\pi}{4}} \left(= \left[-\frac{1}{20}\cos 5\theta + \frac{29}{4}\cos \theta\right]_{0}^{\frac{\pi}{4}}\right)$	A1	
	$\frac{1}{4} \left[-\frac{1}{5} \cos \frac{5\pi}{4} + 5 \cos \frac{\pi}{4} - \left(-\frac{1}{5} + 5 \right) \right] + 6 \cos \frac{\pi}{4} - 6$		
	$=\frac{1}{4}\left[\frac{1}{5} \times \frac{1}{\ddot{O}2} + \frac{5}{\ddot{O}2} - 4\frac{4}{5}\right] + \frac{6}{\sqrt{2}} - 6$	dM1	
	$=\frac{73\sqrt{2}}{20}-\frac{36}{5}$ oe	A1	(4)
			[14]
1	Notes		

Page 73 of 123

(a)	
B1	Applies de Moivre correctly. Need not see full statement, but must be correctly applied.
M1	Use binomial theorem to expand $(\cos\theta + i\sin\theta)^5$ May only show imaginary parts - ignore errors in
	real parts. Binomial coefficients must be evaluated.
A1	Simplify coefficients to obtain a simplified result with all imaginary terms correct
M1	Equate imaginary parts and obtain an expression for $\sin 5\theta$ in terms of powers of $\sin \theta$ No $\cos \theta$
	now
A1*	Correct given result obtained from fully correct working with at least one intermediate line wit the
	$(1-\sin^2\theta)^2$ expanded. Must see both sides of answer (may be split across lines). A0 if equating of
	imaginary terms is not clearly implied.
(b)	
	Note Answers only with no working score no marks as the "hence" has not been used. But if the first
	M1A1 gained then dM1 may be implied by a correct answer.
M1	Use substitution $x = \sin \theta$ and attempts to use the result from (a) to obtain a value for $\sin 5\theta$
A1	Correct value for $\sin 5\theta$
dM1	Proceeds to apply arcsin and divide by 5 to obtain at least one value for θ . Note for $\sin 5\theta = \frac{1}{5}$ the
	values you may see are the negatives of the true answers.
	FYI: $(5\theta = -11.53, 191.53, 348.46, 551.53, 708.46, 911.53)$ (Or in radians -0.201
	3.3428, 6.0819, 9.6260, 12.365, 15.909)
A1	Proceeds to take sin and achieve at least 2 different correct values for x or $\sin \theta$
A1	For all 5 values of x or $\sin \theta$ awrt 3 d.p. (allow 0.62 and -0.04)
(c)	
M1	Use previous work to change the integrand into a function that can be integrated
A1	Correct result after integrating. Any limits shown can be ignored
dM1	Substitute given limits, subtracts and uses exact numerical values for trig functions
Al	Final answer correct (oe provided in the given form)

Question Number	Scheme	Notes	Marks
1(a)	$y = \ln(5+3x) \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{5+3x}$	Correct first derivative	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{5+3x} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{9}{(5+3)^2}$	$\frac{d^3 y}{dx^3} = \frac{54}{(5+3x)^3}$	
	M1: Continues the process of differentiating and reaches $\frac{d^3 y}{dx^3} = \frac{k}{(5+3x)^3}$ oe		
	Note this may be achieved via the quotient rule e.g. $\frac{d^3 y}{dx^3} = \frac{-9 \times -2 \times 3(5+3x)}{(5+3x)^4}$		
	A1: Correct simplified third derivative. A	llow e.g. $\frac{54}{(5+3x)^3}$ or $54(5+3x)^{-3}$.	
			(3)
(b)	$y_0 = \ln 5, y'_0 = \frac{3}{5}, y''_0 = -\frac{9}{25}, y''_0 = \frac{54}{125}$ $\Rightarrow \ln (5+3x) \approx \ln 5 + \frac{3}{5}x - \frac{9}{25}\frac{x^2}{2!} + \frac{54}{125}\frac{x^3}{3!} + \dots$ Attempts all values at $x = 0$ and applies Maclaurin's theorem. Evidence for attempting the values can be taken from at least 2 terms. The form of the expansion must be correct including the factorials or their values. Note that this is "Hence" and so do not allow other methods e.g. Formula Book.		M1
	$\ln(5+3x) \approx \ln 5 + \frac{3}{5}x - \frac{3}{5}$ Correct expansion. The "ln(5+	$\frac{9}{50}x^{2} + \frac{9}{125}x^{3} + \dots$ + 3x) =" is not required.	A1
		· · · · ·	(2)
(c)	$\ln(5-3x) \approx \ln 5 - \frac{3}{5}x - \frac{3}$	$\frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots$ tained "from scratch" changed on the coefficients of the odd ct form e.g. a polynomial in ascending fx.	B1ft
			(1)
(d)	$\ln \frac{(5+3x)}{(5-3x)} = \ln (5+3)$ $\ln 5 + \frac{3}{5}x - \frac{9}{50}x^2 + \frac{9}{125}x^3 + \dots - \left(\ln 5\right)$ Subtracts <u>their</u> 2 different series to obtain a powers of	$x) - \ln(5 - 3x)$ $5 - \frac{3}{5}x - \frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots$ It least 2 non-zero terms in ascending 5x.	M1
	$=\frac{6}{5}x + \frac{18}{125}x$ Correct terms. Allow e.g. 0+	$x^{3} + \dots$ $\frac{6}{5}x + 0x^{2} + \frac{18}{125}x^{3} + \dots$	A1

Page 75 of 123

	Allow both marks to score in (d) provided the correct series have been obtained in	
	(b) and (c) by any means.	
		(2)
		Total 8

Question Number	Scheme	Notes	Marks
2(a)	1	A B C	
	(2n-1)(2n+1)(2n+3)	$\int = \frac{1}{2n-1} + \frac{1}{2n+1} + \frac{1}{2n+3}$	2.61
	$\Rightarrow A =,$	B =, C =	MI
	Correct partial fraction attempt	ot to obtain values for A, B and C	
		$- \text{ or } e = \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$	
	$\overline{8(2n-1)}^{-}\overline{4(2n+1)}^{+}\overline{8(2n+3)}$	$\frac{1}{16n-8} - \frac{1}{8n+4} + \frac{1}{16n+24}$	
	$\frac{1}{2}$	$\frac{1}{1}$ $\frac{1}{2}$	Δ1
	or e.g. $\frac{8}{(2n-1)}$	$-\frac{4}{(2n+1)}+\frac{8}{(2n+3)}$	AI
	Correct partial fraction	ons. (May be seen in (b))	
	This mark is not for the correct values of	of A , B and C , it is for the correct fractions.	
			(2)
(b)	$\frac{1}{n}\sum_{n=1}^{n}\left(\frac{1}{n}\right)$	$\left(\frac{2}{1+1}+\frac{1}{1+1}\right) =$	
	$8 \sum_{r=1}^{\infty} (2r-1)$	2r+1 $2r+3$)	
	$\frac{1}{1-2+\frac{1}{2}}$	-	
	8(1 3 /5		
	$+\frac{1}{3}-\frac{2}{5}+\frac{1}{7}$		
	$\chi \chi \chi \eta$		
	$\frac{1}{5}\frac{1}{7}$ +	$\frac{4}{9}$	
	•		M1
	•		
	+ 1/	$\frac{2}{1} + \frac{1}{1}$	
	2n-3/2	2n-1 $2n+1$	
		2 (1)	
	$+\frac{1}{2n-1}-\frac{1}{2}$	$\overline{n+1}^+$ $\overline{2n+3}$	
	Uses the method of differences to fin	d sufficient terms to establish serves line	
	E_{eg} 3 rows at the start and	2 rows at the end or vice versa	
	This may be implied if they extra	act the correct non-cancelling terms.	
	$=\frac{1}{2}\left(1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2}\right)$ or e.g. =	$=\frac{1}{2}\left(1-\frac{2}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-\frac{2}{2}+\frac{1}{2}+\frac{1}{2}\right)$	A 1
	$\delta = 5 - 2n + 1 - 2n + 3$	δ $($ 3 3 $2n+1$ $2n+1$ $2n+3)$	
	$\frac{1(2(2n+1)(2n+3))}{1(2n+1)(2n+3)}$	3(2n+3)+3(2n+1)	
	$=\frac{1}{8}\left(\frac{2(2n+1)(2n+3)}{3(2n+1)}\right)$	$\frac{3(2n+3)+3(2n+1)}{1)(2n+3)} = \dots$	
	Attempts to combine terms into one fr	action. There must have been at least one	dM1
	constant term and at least 2 different a	lgebraic terms with at least 3 terms in the	
	numerator when co	mbining the fractions.	

Page 77 of 123

$=\frac{n(n+2)}{3(2n+1)(2n+3)}$	Cao	A1
		(4)
		Total 6

Question Number	Scheme	Notes	Marks
3(a)	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	$y = \frac{1}{z}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x}$	Correct differentiation	B1
	$-\frac{x^2}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = \frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
			(3)
(a) Way 2	$y = \frac{1}{z} \Longrightarrow zy = 1 \Longrightarrow y \frac{dz}{dx} + z \frac{dy}{dx} = 0$	Correct differentiation	B1
	$-\frac{y}{z}x^2\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = \frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(a) Way 3	$y = \frac{1}{z} \Rightarrow z = \frac{1}{y} \Rightarrow \frac{dz}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$	Correct differentiation	B1
	$-\frac{1}{y^2}\frac{dy}{dx} - \frac{1}{xy} = -\frac{2}{x^2}$	Substitutes into differential equation (II)	M1
	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	Obtains differential equation (I) with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(b)	$I = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$	Correct integrating factor of $\frac{1}{x}$	B1
	$\frac{z}{x} = -\int \frac{2}{x^3} \mathrm{d}x$	For $Iz = -\int \frac{2I}{x^2} dx$. Condone the "dx" missing.	M1
	$\frac{z}{x} = \frac{1}{x^2} + c$	Correct equation including constant	A1
	$z = \frac{1}{x} + cx$	Correct equation in the required form	A1
			(4)
(c)	$\frac{1}{y} = \frac{1}{x} + cx \Longrightarrow -\frac{8}{3} = \frac{1}{3} + 3c \Longrightarrow c = -1$	Reverses the substitution and uses the given conditions to find their constant	M1

Page 79 of 123

$\frac{1}{y} = \frac{1}{x} - x \Longrightarrow y = \frac{x}{1 - x^2}$	Correct equation for y in terms of x. Allow any correct equivalents e.g. $y = \frac{1}{x^{-1} - x}, \ y = \frac{1}{\frac{1}{x} - x}$	A1
		(2)
		Total 9

Question Number	Scheme	Notes	Marks
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 - x \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 1$	Correct expression for $\frac{d^2 y}{dx^2}$	B1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 2y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} +$	$-2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$	
	M1 : Applies the product rule to obtain $\frac{d^3y}{dx^3}$	$= Ay \frac{d^2 y}{dx^2} + \dots \text{ or } \frac{d^3 y}{dx^3} = \dots + B\left(\frac{dy}{dx}\right)^2$	M1 A1
	where is no A1: Correct expression. Ap	on-zero ply isw if necessary.	
	$\frac{d^3 y}{dx^3} = 2y\frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 \Longrightarrow \frac{d^4 y}{dx^4} = 2$	$4y\frac{d^3y}{dx^3} + 2\frac{dy}{dx}\frac{d^2y}{dx^2} + 4\frac{dy}{dx}\frac{d^2y}{dx^2}$	
	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = 2y\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + $	$6\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$	A1
	Correct expression for $\frac{d^4y}{dx^4}$ or c	correct values for A and B.	
	Note:		
	If e.g. $\frac{d^2 y}{dx^2} = 2y \frac{dy}{dx}$ is obtained, allow recov	very in (a) so B0M1A1A1 is possible.	
			(4)
(b)	$(y)_{-1} = 1, (y')_{-1} = 2, (y'')_{-1} = 3,$	$(y''')_{-1} = 14, (y''')_{-1} = 64$	2.61
	Attempts the values up to at least the 3rd	derivative using $x = -1$ and $y = 1$	MI
	$\frac{3(r+1)^2}{3(r+1)^2}$	$(x+1)^3$ $64(x+1)^4$	
	$(y=)1+2(x+1)+\frac{3(x+1)}{2}+\frac{14(x+1)}{3!}+\frac{64(x+1)}{4!}+\dots$		
	Correct application of the Taylor	series in powers of $(x + 1)$	M1
	If the expansion is just written down with no for their values $F = a_{1} + a_{2}$ with no exit	formula quoted then it must be correct	
	for their values. E.g. $y = -1 + \dots$ with no evid	$(x+1)^3 = 8(x+1)^4$	
	$(y=)1+2(x+1)+\frac{3(x+1)}{2}+\frac{7}{2}$	$\frac{(x+1)}{3} + \frac{\delta(x+1)}{3} + \dots$	A1
	Correct simplified expansion. T	The " $y =$ " is not required.	
			(3)
			Total 7

Question 5 General Guidance

B1: This mark is for sight of -8 seen as part of their working. It may be seen as e.g. embedded in an inequality, as part of their solution if they consider for example x > -8, x < -8 or -8 is seen in a sketch etc.

Do not allow for just e.g. x + 8 > 0,

M1: Any valid attempt to find at least one critical value other than x = -8 (see below). Condone use of e.g. "=", ">", "<" etc as part of their working.

Note these usually come in pairs as $3, -\frac{19}{3}$ or 3, -13

M1: A valid attempt to find all critical values.

Condone use of e.g. "=", ">", "<" etc as part of their working.

- A1: Any 2 critical values other than x = -8. May be seen embedded in an inequality or on a sketch.
- A1: 2 correct regions
- A1: All correct with no extra regions

Question Number	Scheme	Notes	Marks
5	(x =) - 8	This cv stated or used	B1
	For cv's 3, $-\frac{19}{3}$	DR For cv's 3, -13	
	Examples: $x^2 - 9 = (x+8)(6-2x) \Rightarrow x =$	Examples: $x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	or $(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	or $-(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	M1
	$\frac{x^2-9}{(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2 - 9}{-(x+8)} - (6 - 2x) = 0 \implies x = >$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	For cv's 3, $-\frac{19}{3}$ A	ND For cv's $3, -13$	
	Examples: $x^2 - 9 = (x+8)(6-2x) \Longrightarrow x = \dots$	Examples: $x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	$(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	$-(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$ or	M1
	$\frac{x^2 - 9}{(x+8)} - (6 - 2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2-9}{-(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	Any two of: $x = -13, -\frac{19}{3}, 3$	For any two of these cv's. May be seen embedded in their inequalities. Depends on at least one previous M mark.	A1
	-13 < x < -8, -8	$< x < -\frac{19}{3}, x > 3$	
	A1: Any 2 of th	ese inequalities.	
	Note that $-13 < x < -\frac{19}{3}, x \neq -8$ w	ould count as 2 correct inequalities.	A1 A1
	Also condone $-13 < x < -\frac{19}{3}$,	x > 3 as 2 correct inequalities.	
	Depends on at least o	ne previous M mark.	
	Allow equivalent notation for the ine	caualities e.g. for $-13 < x < -8$ allow	
	x > -13 and $x < -8$, $x > -13$, $x < -8$, $-8 > -8$	$x > -13, (-13, -8), \{x : x > -13 \cap x < -8\}$	
	But not $x > -$	-13 or x < -8	
	Note that $-13 < x < -\frac{19}{3}$, x	$\neq -8$, $x > 3$ is fully correct.	
			(6)
			Total 6

Page 83 of 123

Note that it is possible to find all the cv's by squaring both sides of the equation:

(x=)-8	This cv stated or used	B1
$\frac{\left(x^2-9\right)^2}{\left(x+8\right)^2} = (6-2x)^2 \Rightarrow x^4 - 18x^2 + 81 = (36-24x+4x^2)(x^2+16x+64)$ $\Rightarrow 3x^4 + 40x^3 - 74x^2 - 960x + 2223 = 0 \Rightarrow x = \dots$ M2 Requires a complete attempt to square both sides, multiply up to obtain a quartic equation and an attempt to solve to find at least 1 critical value other than $x = -8$		M1M1
Any two of: $x = -13, -\frac{19}{3}, 3$	For any two of these cv's. May be seen embedded in their inequalities. Depends on both previous M marks.	A1
$-13 < x < -8, -8$ A1: Any 2 of th Note that $-13 < x < -\frac{19}{3}, x \ne -8$ w Also condone $-13 < x < -\frac{19}{3},$ Depends on at least o A1: All correct and no other region	$x < x < -\frac{19}{3}, x > 3$ ese inequalities. rould count as 2 correct inequalities. x > 3 as 2 correct inequalities. one previous M mark. s. Depends on all previous marks.	A1 A1
Allow equivalent notation for the ine x > -13 and $x < -8$, $x > -13$, $x < -8$, $-8 > -8But not x > -8Note that -13 < x < -\frac{19}{3}, x < -\frac{19}{3}$	equalities e.g. for $-13 < x < -8$ allow > $x > -13, (-13, -8), \{x : x > -13 \cap x < -8\}$ -13 or $x < -8$ $x \neq -8, x > 3$ is fully correct.	

Question Number	Scheme	Notes	Marks
6(a)	Im	A straight line anywhere that is not vertical or horizontal which does not pass through the origin. It may be solid or dotted. Clear "V" shapes score M0.	M1
	Re	A straight line in the correct position. Must have a positive gradient and lie in quadrants 1, 3 and 4. Ignore any intercepts correct or incorrect. If there are other lines that are clearly "construction" lines e.g. a line from 2i to 3 they can be ignored. The line may be solid or dotted. However, if there are clearly several lines then score A0.	A1
			(2)

Part (b)

The approaches below are the ones that have been seen most often.

Apply the mark scheme to the overall method the candidate has chosen.

There may be several attempts:

- If none are crossed out, mark all attempts and score the best single complete attempt
- If some attempts are crossed out, mark the uncrossed out work
- If everything is crossed out, mark all the work and score the best single complete attempt

Note that the question does not specify the variables the candidates should work in so they may use: e.g. z = x + iy and w = u + iv or w = x + iy and z = u + iv or any other letters so please check the work carefully.

Note that the M marks are all dependent on each other.

(b)		Attempts to make z the subject.	
Way 1	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
		real and non-zero.	
	$z = \frac{2(u+iv)i}{u+iv-i}$ or e.g	g. $z = \frac{2(x+iy)i}{x+iy-i}$	
	u + iv = 1 2(u + iv)i = u = (v)	x + 1y - 1	
	$z = \frac{2(u+iv)i}{u+(v-1)i} \times \frac{u-(v)}{u-(v)}$	$\frac{-1}{-1}$ or equivalent	d M1
	Introduces $w = u + iv$ or e.g. $w = x + iy$ and	d attempts to multiply numerator and	
	denominator by the complex conjugate of would be sufficient e.g. no expan	the denominator. The above statement asion is needed for this mark.	
	$-2u \qquad 2u^2 + 2v(v-1)$.	$-2x \qquad 2x^2 + 2y(y-1)$.	
	$z = \frac{1}{u^2 + (v-1)^2} + \frac{1}{u^2 + (v-1)^2} $ or e.g	$z = \frac{1}{x^2 + (y-1)^2} + \frac{1}{x^2 + (y-1)^2} $	
	or		A 1
	$z = \frac{-2uv + 2u(v-1) + (2u^2 + 2v(v-1))i}{u^2 + (v-1)^2} \text{ or e.g}$	$g \cdot z = \frac{-2xy + 2x(y-1) + (2x^2 + 2y(y-1))i}{x^2 + (y-1)^2}$	AI
	u = (v-1)	x + (y-1)	
	identified. May be embedded a	s above or stated explicitly.	
	$ z-2\mathbf{i} = z-3 \Longrightarrow y-1 = \frac{3}{2} \left(x - \frac{3}{2} \right)$	$\int \left(y = \frac{3}{2}x - \frac{5}{4}, \ 6x - 4y = 5 \right)$	
	$\Rightarrow \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} - 1 = \frac{1}{2}$	$\frac{3}{2}\left(\frac{-2u}{u^2+(v-1)^2}-\frac{3}{2}\right)$	
	Attempts the Cartesian equation of the lo equivalent using their variables to obtain an Condone slips with the locus of z but must b	cus of z and substitutes for x and y or equation in u and v (or their variables). be a linear equation in any form but with	
	a non-zero con	stant term.	ddM1
	$ z-2i = z-3 \Longrightarrow \left \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} \right $	$ \mathbf{i} - 2\mathbf{i} = \left \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} \mathbf{i} - 3 \right $	
	$\Rightarrow \left(\frac{-2u}{u^{2} + (v-1)^{2}}\right)^{2} + \left(\frac{2u^{2} + 2v(v-1)}{u^{2} + (v-1)^{2}} - 2\right)^{2} =$	$= \left(\frac{-2u}{u^2 + (v-1)^2} - 3\right)^2 + \left(\frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2}\right)^2$	
	Substitutes their z into the locus of z and ap equation in u and v (or their variables). Not	pplies Pythagoras correctly to obtain an e that here, further progress is unlikely.	
	$13u^2 + 13v^2 + 12u - 18v + 5 = 0 \Longrightarrow$	$u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$	
	$\Rightarrow \left(u + \frac{6}{13}\right)^2 + \left(1\right)^2$	$v - \frac{9}{13} \bigg)^2 = \frac{4}{13}$	dddM1
	Attempts to complete the square on their each the same cost	quation in u and v where u^2 and v^2 have efficient.	
	Award for e.g. $u^2 + v^2 + \alpha u + \beta v + .$	$\dots = \left(u + \frac{\alpha}{2}\right)^2 + \left(v + \frac{\beta}{2}\right)^2 + \dots = \dots$	

Page 86 of 123

FP2_2023_01_MS

	Attempts using the form $u^2 + v^2 + 2$	2gu + 2fv + c = 0 send to review.	
	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
			Total 8
(b) Way 2	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Attempts to make z the subject. Must obtain the form $\frac{awi}{bw+ci}$, a, b, c real and non-zero	M1
	$ z-2i = z-3 \Rightarrow \left \frac{2w}{w-1}\right \Rightarrow \left \frac{2wi-2wi-2}{w-i}\right = $ Introduces z in terms of w into the given	$\frac{i}{i} - 2i \left = \left \frac{2wi}{w - i} - 3 \right $ $= \left \frac{2wi - 3w + 3i}{w - i} \right $ locus and attempts to combine terms	d M1
	$\left \frac{-2}{w-i}\right = \left \frac{2wi - 3w + 3i}{w-i}\right \Rightarrow$ Correct equation with	-2 = 2wi - 3w + 3i fractions removed	Al
	$ 2(u+iv)i - 3(u+iv) + 3i = 2 \Longrightarrow ($ Introduces e.g. $w = u + iv$ and a	$(3u+2v)^{2} + (3v-2u-3)^{2} = 4$ pplies Pythagoras correctly	ddM1
	$13u^{2} + 13v^{2} + 12u - 18v + 9 = 4 \Rightarrow i$ $\Rightarrow \left(u + \frac{6}{13}\right)^{2} + \left(v\right)$ Attempts to complete the square on their equation the same contribution of the same contribution. Award for e.g. $u^{2} + v^{2} + \alpha u + \beta v +$ Attempts using the form $u^{2} + v^{2} + 2$	$u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$ $v - \frac{9}{13} \Big)^{2} = \frac{4}{13}$ quation in <i>u</i> and <i>v</i> where u^{2} and v^{2} have efficient. $ = \left(u + \frac{\alpha}{2}\right)^{2} + \left(v + \frac{\beta}{2}\right)^{2} + =$ gu + 2fv + c = 0 send to review.	ddd M1
	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
			Total 8

(b)		Attempts to make <i>z</i> the subject.	
Way 3	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
		real and non-zero.	
	$ z-2\mathbf{i} = z-3 \Longrightarrow \left \frac{2w}{w-1}\right $	$\left \frac{\mathrm{i}}{\mathrm{i}}-2\mathrm{i}\right = \left \frac{2\mathrm{wi}}{\mathrm{w-i}}-3\right $	
	$\Rightarrow \left \frac{2wi - 2wi - 2}{w - i} \right =$	$= \left \frac{2wi - 3w + 3i}{w - i} \right $	dM1
	Introduces z and attemp	ts to combine terms	
	$\left \frac{-2}{w-i}\right = \left \frac{2wi - 3w + 3i}{w-i}\right \Longrightarrow$	-2 = 2wi - 3w + 3i	A1
	Correct equation with	fractions removed	
	$\left w(2i-3)+3i\right = \left (2i-3)\left(w+\frac{2i}{2i}\right)\right $	$\left \frac{3i}{-3}\right = 2i-3 \left w + \frac{6-9i}{13} \right = 2$	ddM1
	Attempts to isolate w and rational	ise denominator of other term	
	$\sqrt{13} \left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = 2 \Longrightarrow$	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	dddM1A1
	M1: Completes the process by	y dividing by their $ 2i-3 $	uuu
	A1: Correct equation in	n the required form	
			(6)

Question Number	Scheme	Notes	Marks	
7(a)	Condone use of e.g. $C + iS$ for $\cos x + i \sin x$ if the intention is clear.			
	$(\cos 5x \equiv) \operatorname{Re}(\cos x + i \sin x)^5 \equiv \cos^5 x + \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ Identifies the correct terms of the binomized They may expand $(\cos x + i \sin x)^5$ completely the real terms which must have the correct bin correct powers of sin x and cos x. Condon	$\int \cos^3 x (i \sin x)^2 + {5 \choose 4} \cos x (i \sin x)^4$ ial expansion of $(\cos x + i \sin x)^5$ but there must be an attempt to extract nomial coefficients combined with the	M1	
	$(\cos 5x \equiv)\cos^5 x - 10\cos^3 x$ Correct simplified expression. Condone	$\sin^2 x + 5\cos x \sin^4 x$ use of a different variable e.g. θ .	A1	
	$\equiv \cos x \left(\cos^4 x - 10 \cos^2 x \right)$	$x\sin^2 x + 5\sin^4 x$		
	$\equiv \cos x \left(\left(1 - \sin^2 x \right)^2 - 10 \left(1 - \sin^2 x \right)^2 \right)^2$	$\sin^2 x \left(\sin^2 x + 5\sin^4 x \right)$	M1	
	Applies $\cos^2 x = 1 - \sin^2 x$ to obtain an expression Condone use of a different	on in terms of sin x inside the bracket. nt variable e.g. θ .		
	$\equiv \cos x (16\sin^4 x - 12\sin^2 x + 1)$ Correct expression. Must be in terms of x now. The "cos5x =" is not required			
			(4)	
(b)	Allow use of a different variable	$\frac{\ln(b) \text{ e.g. } x \text{ for } \underline{all} \text{ marks.}}{2}$		
	$\cos 5\theta = \sin 2\theta \sin \theta$	$h\theta - \cos\theta$		
	$\Rightarrow \cos\theta (16\sin^2\theta - 12\sin^2\theta + 1)$	$=2\sin^2\theta\cos\theta-\cos\theta$	M1	
	$\Rightarrow \cos\theta (16\sin^4\theta - 14)$	$\sin^2\theta + 2 = 0$		
	Uses the result from part (a) with $\sin 2\theta = 2\sin\theta\cos\theta$ and collects terms			
	$16\sin^4\theta - 14\sin^2\theta + 2 = 0$			
	$\Rightarrow \sin^2 \theta = \frac{7 \pm \sqrt{17}}{16}$	$\sin^2\theta = \frac{7\pm\sqrt{17}}{16} \Longrightarrow \sin\theta = \dots$		
	Solves for $\sin^2 \theta$ by any method including calculated least one value for $\sin \theta$. Depends on the first matrix $\sin \theta$ or θ . NB $\frac{7 \pm \sqrt{17}}{16} = 0.000$	ulator and takes square root to obtain at nark. May be implied by their values of .69519, 0.17980	dM1	
	$\sin\theta = \sqrt{\frac{7 \pm \sqrt{17}}{16}} \Longrightarrow \theta = \dots$			
	NB $\sqrt{\frac{7 \pm \sqrt{17}}{16}} = 0.83378$	3, 0.424035	ddM1	
	A full method to reach at least one value fo May be implied by the	r θ . Depends on the previous mark. eir values of θ		
	$(\theta =)0.986, 0.438$	Correct values and no others in range. Allow awrt these values.	A1	
			(4)	
			Total 8	

Note that it is possible to do 7(b) by changing to $\cos \theta$ e.g.

$$\cos\theta \left(16\sin^4\theta - 12\sin^2\theta + 1\right) = \cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right)$$
$$\cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right) = 2\sin^2\theta\cos\theta - \cos\theta$$
$$16\cos^4\theta - 18\cos^2\theta + 4 = 0$$
$$\cos^2\theta = \frac{9 \pm \sqrt{17}}{16} \Rightarrow \cos\theta = \sqrt{\frac{9 \pm \sqrt{17}}{16}}$$
$$(\theta =)0.986, \ 0.438$$

This is acceptable as they used part (a) and can be scored as:

M1: Uses part (a) with $\sin^2 \theta = 1 - \cos^2 \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$ and collects terms.

dM1: Solves for $\cos^2 \theta$ by any method including calculator and takes square root to obtain at least one value for $\cos \theta$. Depends on the first mark. May be implied by their values of $\cos \theta$ or θ .

NB
$$\frac{9 \pm \sqrt{17}}{16} = 0.82019..., 0.30480...$$

dM1: A full method to reach at least one value for θ . Depends on the previous mark. May be implied by their values of θ

NB $\sqrt{\frac{9 \pm \sqrt{17}}{16}} = 0.905645..., 0.552092...$

A1:
$$(\theta =)0.986, 0.438$$

Question Number	Scheme	Notes	Marks
8(a)	$y = r \sin \theta = (1 - \sin \theta) \sin \theta = \sin \theta - \sin^2 \theta$	Differentiates $(1 - \sin \theta) \sin \theta$ to	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta - 2\sin\theta\cos\theta$	achieve $\pm \cos \theta \pm k \sin \theta \cos \theta$ or equivalent. Use of $y = r \cos \theta$ or	M1
	or e.g.	$x = r \cos \theta$ scores M0	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta - \sin 2\theta$	Correct derivative in any form.	A1
	$\cos\theta - 2\sin\theta\cos\theta = 0 \Longrightarrow \cos\theta (1 - 2\sin\theta)$	$(n \theta) = 0 \implies \sin \theta = \frac{1}{2} \implies \theta = \dots$	dM1
	Solves to find a value for θ . Define the solution of θ is the solution of	epends on the first M.	
	$\left(\frac{1}{2},\frac{\pi}{6}\right)$		
	Correct coordinates and no others. Isw if nece	essary e.g. if written as $\left(\frac{\pi}{6}, \frac{1}{2}\right)$ after	A1
	correct values seen or implied award a	A1. Allow e.g. $\theta = \frac{\pi}{6}, r = \frac{1}{2}$.	
	The value of <i>r</i> must be seen in (a) – i.e	e. do not allow recovery in (b).	
(b)	1 1 °		(4)
Way 1	Note that the $\frac{1}{2}$ in $\frac{1}{2}$ $r^2 d\theta$ is not re	equired for the first 4 marks	
	$\int (1-\sin\theta)^2 d\theta = \int (1-2\sin\theta + \sin^2\theta) d\theta$	Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies	M1
	$= \int \left(1 - 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta\right) \mathrm{d}\theta$	$\sin^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$	
	$\int (1 - \sin \theta)^2 \mathrm{d}\theta = \frac{3}{2}\theta + 2 \cos \theta$	$\cos\theta - \frac{1}{4}\sin 2\theta(+c)$	
	Correct integration. Condone	mixed variables e.g.	A1
	$\int (1-\sin\theta)^2 \mathrm{d}\theta = \frac{3}{2}x + 2\cos\theta$	$\cos\theta - \frac{1}{4}\sin 2\theta(+c)$	
	$\left(\frac{1}{2}\right)\left[\frac{3}{2}\theta + 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4} + \frac{1}{2$	$+\sqrt{3} - \frac{\sqrt{3}}{8} - (2) \left[\left(= \frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1 \right) \right]$	
	Applies the limits of 0 and their $\frac{\pi}{6}$ to their i	integration. The $\frac{1}{2}$ is not required.	M1
	For the integration look for at leas	st $\pm \int \sin\theta \mathrm{d}\theta \to \pm \cos\theta$	
	Triangle: $\frac{1}{2} \times \frac{1}{2} \sin \frac{\pi}{6} \times \frac{1}{2}$	$\frac{\pi}{2}\cos\frac{\pi}{6}\left(=\frac{\sqrt{3}}{32}\right)$	M1
	Uses a correct strategy for the	e area oI the triangle Fully correct method for the required	
	Area of $R = \frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1 + \frac{\sqrt{3}}{32}$	area. Depends on all previous method marks.	dM1
L			1

Page 91 of 123

$\frac{1}{32}\left(4\pi+15\sqrt{3}-32\right)$	Сао	A1
		(6)
		Total 10

Page 92 of 123

Question Number	Scheme	Notes	Marks
9(a)(i)	$x = t^{\frac{1}{2}} \Longrightarrow \frac{dx}{dy} = \frac{1}{2}t^{-\frac{1}{2}}\frac{dt}{dy} \Longrightarrow \frac{dy}{dx} = \dots \text{ or } t =$ Applies the chain rule and procee	$= x^{2} \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \dots$ eds to an expression for $\frac{dy}{dx}$	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t}$	Any correct expression for $\frac{dy}{dx}$ in terms of y and t	A1
(a)(ii)	$\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt} \Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dt}$ dM1 : Uses the product rule to differentiate a	$t^{-\frac{1}{2}} \frac{dt}{dx} + 2t^{\frac{1}{2}} \frac{d^2 y}{dt^2} \frac{dt}{dx}$ an equation of the form $\frac{dy}{dx} = kt^{\frac{1}{2}} \frac{dy}{dt}$ or	
	equivalent e.g. $\frac{dy}{dx} = \frac{d^2y}{dx^2} = \alpha t^{-\frac{1}{2}} \frac{dy}{dt} \frac{dt}{dx} + \dots$ or $\frac{d}{dt} \frac{dt}{dt} = \frac{d^2y}{dt^2} \frac{dt}{dt^2} + \dots$ or $\frac{d}{dt} \frac{dt}{dt} = \frac{dt}{dt} \frac{dt}{dt} + \dots$	$kx \frac{dy}{dt}$ to obtain $\frac{d^2y}{dt^2} = \dots + \beta t^{\frac{1}{2}} \frac{d^2y}{dt^2} \frac{dt}{dx}$ where \dots is non-zero	dM1A1
	A1: <u>Any</u> correct expr $\frac{dy}{dt}t^{-\frac{1}{2}}\frac{dt}{dx} + 2t^{\frac{1}{2}}\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = \frac{dy}{dt}$ $\frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} + 2t^{\frac{1}{2}}\frac{d^{2}y}{dt^{2}}\frac{dt}{dt} = \frac{dy}{dt}$	$\frac{d^2 y}{dt^2}$ $\frac{d^2 y}{dt^2}$ $\frac{d^2 y}{dt^2}$ $\frac{d^2 y}{dt^2}$	A1
	Correct expression in	terms of <i>y</i> and <i>t</i>	
(b)	$x\frac{d^{2}y}{dx^{2}} - (6x^{2} + 1)\frac{dy}{dx} + 9x^{3}y = x^{5} \Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt}\right)$ Substitutes their expressions from r	$\frac{1}{1+4t\frac{d^{2}y}{dt^{2}}} - (6t+1)2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$ part (a) and replaces x with $t^{\frac{1}{2}}$	(5) M1
	$2t^{\frac{1}{2}}\frac{dy}{dt} + 4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} - 12t^{\frac{3}{2}}\frac{dy}{dt}$ $\Rightarrow 4\frac{d^{2}y}{dt^{2}} - 12\frac{dy}{dt}$ Obtains the given answer with no errors and intermediate line after substitue	$-2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$ -+9y = t* sufficient working shown – at least one at the but check working.	A1*
	Must follow full marks in (a)) apart from SC below.	(2)

Page 93 of 123

Special case in (a) and (b) for those who do not have (a) in terms of y and t only:

$$t = x^{2} \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \dots \text{ Scores M1. } \dots = 2x\frac{dy}{dt} \text{ scores A0 in (a)(i)}$$

$$\frac{dy}{dx} = 2x\frac{dy}{dt} \Rightarrow \frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} + 2x\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = 2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}} \text{ Scores dM1A1A0 in (a)(ii)}$$

$$x\frac{d^{2}y}{dx^{2}} - (6x^{2}+1)\frac{dy}{dx} + 9x^{3}y = x^{5} \Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2x\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$$

$$\Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4t\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}} \Rightarrow 4\frac{d^{2}y}{dt^{2}} - 12\frac{dy}{dt} + 9y = t^{*} \text{ Scores M1A1 in (b)}$$

Mark (c) and (d) together

(c)	$4m^2 - 12m + 9 = 0 \Longrightarrow m = \frac{3}{2}$	Attempts to solve $4m^2 - 12m + 9 = 0$ Apply general guidance for solving a 3TQ if necessary.	M1
	$(y=)e^{\frac{3}{2}t}(At+B)$	Correct CF. No need for " $y =$ " Condone $(y =)e^{\frac{3}{2}x}(Ax + B)$ here but must be in terms of <i>t</i> in the GS. Allow equivalents for the $\frac{3}{2}$.	A1
	$(y =)at + b \Rightarrow \frac{dy}{dt} =$	$a \Rightarrow \frac{d^2 y}{dt^2} = 0$	
	$\rightarrow -12d + 9(d)$ Starts with the correct PI form and different	iates to obtain $\frac{dy}{dt} = a$ and $\frac{d^2y}{dt^2} = 0$ and	M1
	substitutes. NB starting with	h a PI of $y = at$ is M0	
	$9a = 1 \Longrightarrow a = \dots$ $9b - 12a = 0 \Longrightarrow b = \dots$	Complete method to find <i>a</i> and <i>b</i> by comparing coefficients. Depends on the previous method mark.	dM1
	$y = e^{\frac{3}{2}t} \left(At + B\right) + \frac{1}{9}t + \frac{4}{27}$	Correct GS including " $y =$ " and must be in terms of <i>t</i> (no <i>x</i> 's). Allow equivalent exact fractions for the constants.	A1
			(5)
(d)	$y = e^{\frac{3}{2}x^2} (Ax^2 + B)$ Correct equation including " $y =$ " (for Allow equivalent exact fractions for the const be in terms of t and the answer to (d) should x^2 . If there is no final answer to (c) you can a terms of x if it follows t	$1 + \frac{1}{9}x^2 + \frac{4}{27}$ llow through their answer to (c)). stants. For the ft, the answer to (c) must be the same as (c) with <i>t</i> replaced with award B1ft if the equation is correct in he previous work.	B1ft
			(1)
			Total 13

Page 94 of 123

Question Number	Scheme	Marks	
1(a)	$\frac{2}{\sqrt{r}+\sqrt{r-2}} \times \frac{\sqrt{r}-\sqrt{r-2}}{\sqrt{r}-\sqrt{r-2}}$	M1	
	$\frac{2\left(\sqrt{r}-\sqrt{r-2}\right)}{r-(r-2)} = \sqrt{r}-\sqrt{r-2} *$	A1*	
		(2)	
(b)	$r = 2: \sqrt{2} - \sqrt{2-2} (= \sqrt{2} - 0) \qquad \dots r = n-2: \sqrt{n-2} - \sqrt{n-4}$		
	$r = 3: \sqrt{3} - \sqrt{3-2} (= \sqrt{3} - 1)$ $r = n-1: \sqrt{n-1} - \sqrt{n-3}$	M1	
	$r = 4: \sqrt{4} - \sqrt{4-2} (= 2 - \sqrt{2})$ $r = n: \sqrt{n} - \sqrt{n-2}$		
	$\left[\sum_{r=2}^{n} \frac{2}{\sqrt{r} + \sqrt{r-2}} = \right] \sqrt{n} + \sqrt{n-1} - 1$	A1 A1	
		(3)	
(c)	$\left[\sum_{r=4}^{50} \frac{2}{\sqrt{r} + \sqrt{r-2}}\right] = f(50) - f(3) = \sqrt{50} + \sqrt{49} - 1 - (\sqrt{3} + \sqrt{2} - 1)$	M1	
	$\left(=5\sqrt{2}+7-1-\sqrt{3}-\sqrt{2}+1\right)=7+4\sqrt{2}-\sqrt{3}$	A1	
		(2)	
Notos		Total 7	
(a)			
M1: Indicat	es intention to multiply either side by a correct fraction, may use $\frac{\sqrt{r-2} - \sqrt{r}}{\sqrt{r-2} - \sqrt{r}}$. The '	'2" may be	
Alternative	y may multiply the initial expression through by $\sqrt{r} + \sqrt{r-2}$ and use a sequence of	equivalences	
(though	h accept with \Rightarrow or nothing between lines).	equivalences	
A1: Fully c	orrect proof. A result from rationalisation that is not the given answer must be seen. If	using a	
sequences of equivalences there must be a minimal conclusion.			
M1: Correc	t process of differences evidenced in their work, e.g. attempts any three of the 6 expre	ssion shown.	
There s	should be enough evidence of at least one pair of cancelling terms. Ignore any attempt the state earlier than $n = 2$	is at any of $r = 0$	
A1: Correct $-\sqrt{1}$	or 1 if they start earlier than $r = 2$. A1: Correct algebraic terms or correct constant term(s) extracted. Accept unsimplified expressions such as $"-\sqrt{1}-\sqrt{0}"$		
A1: Fully c	correct simplified expression. Must have simplified the $\sqrt{1}$ to 1		
(c)			
M1: Attempts $f(50) - f(3)$ using their answer to (b) . Must be indication of subtraction. The '-1's may be omitted, and allow if a slip is made. They may subtract the sum of their results from $r = 2$ and $r = 3$ from (b) or by using (a) again to obtain $f(3)$ but their answer to (b) must be used for $f(50)$. Allow from attempts			

starting at r = 1 in their summations. f(50) - f(4) is M0.

A1: Correct expression or A = 7, B = 4, C = -1 following a correct answer to (b).

The decimal answer 10.92480344... without evidence of the M mark is 0/2

FP2_2023_06_MS

Question Number	Scheme	Marks
2(a)	(a) $\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)^4 = \cos\frac{20\pi}{12} + i\sin\frac{20\pi}{12} \text{or/and}$ $\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^3 = \cos\left(-\pi\right) + i\sin\left(-\pi\right)$	
	$(z_{1} =) \frac{\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}}{\cos(-\pi) + i \sin(-\pi)} = \cos\left(\frac{5\pi}{3} - (-\pi)\right) + i \sin\left(\frac{5\pi}{3} - (-\pi)\right)$ Alt: $(z_{1} =) \frac{\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}}{-1} = -\cos \frac{5\pi}{3} - i \sin \frac{5\pi}{3}$	M1
	$= \cos\frac{8\pi}{3} + i\sin\frac{8\pi}{3} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} *$ Alt: if denominator -1 used via e.g. $\cos\left(\frac{5\pi}{3} - \pi\right) + i\sin\left(-\frac{5\pi}{3}\right)$	A1*
		(4)
(b)	$ z-z_1 \leqslant 1$ $0 \leqslant \arg(z-z_1) \leqslant \frac{3\pi}{4}$	
	A circle in any position (may just see the minor arc)	M1
	A pair of half –lines in correct directions from their centre, one with negative gradient and one parallel to (but not) the <i>x</i> –axis. <i>If full lines are used the M marks can</i> <i>be implied by their shading</i>	M1
	Area shaded inside their circle between the two half lines from from the parallel one anticlockwise to the negative gradient line.	M1
	Fully correct shaded sector. See notes.	A1
		(4)
(c)	$\arctan\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) = \dots \qquad \frac{\pi}{3} (\text{or } 60^\circ)$	M1 A1
		(2)
Notes		1 otal 10
(a) M1: One con through A1: Both con $\left(\cos\frac{\pi}{3}\right)$ dealing M1: A corre	The tree of the Moivre in polar (or exponential) form. Allow use of $e^{i\theta}$ for $\cos\theta + i\sin\theta$ out until the final A. The final A. The tree (unsimplified) in polar form. Accept for both marks use of $(-i\sin\frac{\pi}{3})^3 \rightarrow \cos\pi - i\sin\pi$ but denominator directly to $\cos\pi + i\sin\pi$ with no evider with the negative between terms is A0. The tree tree terms is A0.	nce of nis mark, a
1:00	an af anomation the twice terms is fine. I as he found to relate the second of the sec	$64ha$ 8π

difference of argument in the trig terms is fine. Look for the subtraction of the arguments. Sight of the $\frac{3}{3}$

can imply the mark if no incorrect work is seen. Note it is M0 if the arguments are added (so

Page 96 of 123

 $\cos\left(\frac{5\pi}{3} - \pi\right) + i\sin\left(\frac{5\pi}{3} - \pi\right)$ is M0 unless the denominator has clearly been written as $\cos \pi + i\sin \pi$

first.)

May write the denominator as -1 first, which is correct, score for $-\cos\frac{5\pi}{3} - i\sin\frac{5\pi}{3}$.

Accept methods that convert both numbers into exact Cartesian form, apply a correct process to realise the denominator and convert back to polar form.

Do not allow going straight to $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ for this mark as it is a given answer. Justification is required and an incorrect method is M0.

A1cso: Obtains $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ with suitable intermediate step shown and no errors in the work. Must have

scored the preceding 3 marks. This will usually be via $\cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3}$ unless equivalent suitable

working has been shown to justify the correct modulus (e.g. proceeding via -1 in the denominator).

(b)

Do not be concerned about lines being dashed or dotted in this part. Accept either.

- M1: A circle in any position. You may see just the minor arc of a circle, which is acceptable as long as it is clearly an arc of a circle (e.g. implied by their shading) and not just a angle demarcation.
- M1: Draws or indicates a pair of half–lines from their centre (which need not be in quadrant 2) with one with negative gradient proceeding up and left and one parallel to the *x*–axis proceeding right but not the *x*-axis itself. If full lines are used this can be implied by the shading of the correct region between lines.
- M1: Shades the area between their pair of rays (the second ray may have positive gradient for this mark) and inside their circle, anticlockwise from the horizontal line. The half line need not stem from the centre of the circle for this mark, and accept the *x*-axis as the horizontal line for this mark.
- A1: Fully correct shaded sector. Must
 - be in quadrants 1 and 2
 - have approximately correct gradients for the half-lines (-1 and 0)
 - have circle with centre in quadrant 2 and (if whole circle shown) passing roughly through the origin. If only an arc is shown apply bod as long as the position is reasonable.

Ignore any centre coordinates and axes intersections of any major sector. If extra regions are shaded they must make clear which their region R is in order to access the mark.

(c)

M1: Identifies the correct point for their sector, which must be from a circle with centre in quadrant 1 or 2 (above the real axis) and ray parallel to the real axis, and attempts the relevant angle. Look for selecting the point (c, d) at the "3 o'clock" position having identified a suitable sector and proceeding to find a relevant

positive angle (e.g., allow if $\pi - \theta$ is found) (accept $\arctan \pm \frac{c}{d}$ or $\arctan \pm \frac{d}{c}$ as an attempt at the angle).

Their point must be in quadrants 1 or 2. If no shading was shown in (b) allow for attempts at the relevant point of horizontal ray and circle intersection. Could use other trig.

A1 : Either correct value. Mark final answer.

Question Number	Scheme	Marks
3	$\frac{x+2}{x+4} \leqslant \frac{x}{k(x-1)}$	
(a)	$\begin{bmatrix} \times k(x+4)^{2}(x-1)^{2} \Rightarrow \end{bmatrix} k(x+4)(x-1)^{2}(x+2) \leqslant x(x+4)^{2}(x-1) \\ \Rightarrow k(x+4)(x-1)^{2}(x+2) - x(x+4)^{2}(x-1) \{\leqslant 0\} \\ \xrightarrow{\mathbf{NR}} \\ \frac{x+2}{x+4} - \frac{x}{k(x-1)} \{\leqslant 0\} \Rightarrow \frac{k(x+2)(x-1) - x(x+4)}{k(x+4)(x-1)} \{\leqslant 0\} \\ \end{bmatrix}$	M1
	$(x+4)(x-1)[kx^{2}+kx-2k-x^{2}-4x] \{ \leq 0 \}$	d M1
	$(x+4)(x-1)[(k-1)x^2+(k-4)x-2k] \le 0$ (oe in correct form)	Alcso
		(3)
(b)	$k = 3 \implies 2x^2 - x - 6 = 0$ [(2x + 3)(x - 2) = 0] $\implies x = -\frac{3}{2}, 2$	M1
	$-4 < x \leqslant -\frac{3}{2} \qquad 1 < x \leqslant 2$	d M1 A1 A1
		(4)
		Total 7

M1: Attempts to multiply both sides by e.g. $k(x+4)^2(x-1)^2$ or $k^2(x+4)^2(x-1)^2$ and bring terms together OR bring terms together and attempt a common denominator. There may be slips but the intention must be clear - allow if e.g. one term is missing.

- dM1: Factorises out (x+4)(x-1) and/or multiplies by $(x+4)^2 (x-1)^2$ (which could be implied) and expands remaining terms to get unsimplified 3 term quadratic (terms need not be collected but it must be equivalent to $px^2 + qx + r$ where at least one of p, q and r is a function of k and none are zero). **Dependent on previous M mark.**
- Alcso: Correct statement or p = k 1, q = k 4, r = -2k with no algebraic errors (but condone e.g. recovery of missing brackets if work is clear). It is A0 if any incorrect statement is seen e.g., use of an incorrect inequality sign. Accept with any positive multiples of the coefficients (including k or 1/k etc).
- (b)

M1: Uses k = 3 in their quadratic from (a) (implied by 2 out of three terms correct) and solves to obtain a value. Apply usual rules (may be by calculator - may need to check). If no working, obtains one consistent

solution which must be real. Alternatively restarts from $\frac{x+2}{x+4} \leq \frac{x}{3(x-1)}$ and uses a valid method to

obtain and solve a quadratic (see above). Marks for (a) cannot be scored in (b).

- dM1: With critical values -4, 1 and two different real solutions from their quadratic (\neq -4 or 1), chooses the region between the two smaller values and the region between the two larger values and no other region. Could be non-strict inequalities. **Dependent on previous M mark.**
- A1: Both regions correct but condone e.g incorrect strict non-strict inequalities.
- A1: Both completely correct regions. Allow equivalent notations. Ignore any word between the regions but withhold this last mark if \cap used with set notation.

Question Number	Scheme	Marks
4	$\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 16y = 48x^2 - 34$	
(a)	(AE:) $m^2 - 8m + 16 = 0$ $\begin{bmatrix} \Rightarrow (m-4)^2 = 0 \end{bmatrix}$ $\Rightarrow m = 4$	M1
	$(CF: y =) (A+Bx)e^{4x}$	A1
	$(\mathbf{PI:} \ y =) \lambda x^2 + \mu x + \nu$	B1
	$y' = 2\lambda x + \mu y'' = 2\lambda$ $2\lambda - 8(2\lambda x + \mu) + 16(\lambda x^{2} + \mu x + \nu) = 48x^{2} - 34$ $16\lambda x^{2} = 48x^{2} (-16\lambda + 16\mu)x = 0 2\lambda - 8\mu + 16\nu = -34$ $\lambda = 3 \mu = 3 \nu = -1$	M1
	$y = "(A+Bx)e^{4x}"+3x^2+3x-1$	A1ft
(b)	$(0,4) \Longrightarrow 4 = A - 1 (A = 5)$	(5) M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(A+Bx)\mathrm{e}^{4x} + B\mathrm{e}^{4x} + 6x + 3$	M1
	$21 = 4A + B + 3 \Longrightarrow B = -2 A = 5$ $[y] = (5 - 2x)e^{4x} + 3x^2 + 3x - 1$	M1A1
		(4)
(c)	$(x=-2 \Longrightarrow y=) 9e^{-8}+5$	M1 A1
		(2)
		Total 11

M1: Forms the auxiliary equation (condone one slip/copying error) and solves 3TQ. Usual rules. One consistent solution if no working (could be complex). Implied by a correct CF if no incorrect working shown.

A1: Correct complementary function y = ... not required. May only be seen in final answer.

B1: Correct form for particular integral y = ... not required.

M1: Correct method to obtain value for constants (or constant - but PI must be a quadratic - but could have 1 or 2 terms) - so differentiates twice (powers reduced) and substitutes, equates terms and solves equations. Allow if there are minor slips in the process if the holistic approach is correct.

A1ft: A correct general solution following through on their CF only - the PI must be correct. Must have "y =" e.g., not "GS = "

(b)

M1: Uses (0, 4) in their answer to (a) and forms an equation in one or both of their constants.

- M1: Differentiates their GS, which must contain a term " Bxe^{kx} ", to obtain an expression of the correct form for their GS product rule must be used, powers reduced, but may have errors in coefficients.
- M1: Substitutes x = 0, $\frac{dy}{dx} = 21$ into their equation where their derivative is a changed function and finds values

for their *B* (and their *A* if not found already).

A1: Any correct equation Condone e.g., " PS =... "

(c)

M1: Substitutes x = -2 into their particular solution and obtains an expression of the right form or non-zero values for *p*, *q* and *r*, which need not be integers for the M but should be gathered terms. Implied by a correct answer as long as it fits their answer to (b) if no method shown.

A1: Correct expression or values

Page 99 of 123

Question Number	Scheme	Marks
5(a)	5(a) $w = \frac{z+1}{z-3} \Rightarrow wz - 3w = z+1 \Rightarrow wz - z = 3w+1 \Rightarrow z = \frac{3w+1}{w-1}$	
	$(z=)\frac{(3u+1)+3iv}{(u-1)+iv} \times \frac{(u-1)-iv}{(u-1)-iv} = \dots$	d M1
	$\Rightarrow x = \frac{3u^2 - 2u + 3v^2 - 1}{(u - 1)^2 + v^2} y = \frac{-4v}{(u - 1)^2 + v^2}$	dd M1
	$(y=4x \Longrightarrow) -4v=12u^2-8u+12v^2-4$	
	$\Rightarrow 3u^2 + 3v^2 - 2u + v - 1 = 0 *$	Alcso*
		(5)
(b)	$u^{2} - \frac{2}{3}u + v^{2} + \frac{1}{3}v - \frac{1}{3} = 0 \Longrightarrow \left(u - \frac{1}{3}\right)^{2} - \frac{1}{9} + \left(v + \frac{1}{6}\right)^{2} - \frac{1}{36} - \frac{1}{3} = 0$	
	$\Rightarrow \left(u - \frac{1}{3}\right)^2 + \left(v + \frac{1}{6}\right)^2 = \frac{17}{36}$	
	$\Rightarrow \text{ centre:} \left(\frac{1}{3}, -\frac{1}{6}\right) \left[\text{allow } x = \frac{1}{3}, y = -\frac{1}{6}\right] \text{ radius: } \sqrt{\frac{17}{36}} \text{ or } \frac{\sqrt{17}}{6}$	B1 B1
		(2)
		Total 7
Notes		

M1: Completes an attempt to make *z* the subject.

A1: Correct expression.

- dM1: **Dependent on previous M mark.** Replaces *w* with u + iv and indicates an appropriate attempt to rationalise the denominator. Accept if x + iy is used instead for this mark.
- ddM1: **Dependent on both previous M marks.** Equates real and imaginary parts to obtain expressions for x and y in u and/or v only and uses y = 4x to form an equation in u and v only. Condone intermediate incorrect statements that are recovered for this mark, e.g. condone, missing or incorrect (real) denominator or slips with initial inclusion of i in the y if recovered. E.g. any of

$$x = 3u^2 - 2u + 3v^2 - 1$$
, $x = \frac{3u^2 - 2u + 3v^2 - 1}{(u - 1)^2 - v^2}$, $y = \frac{-4vi}{(u - 1)^2 + v^2}$ or similar may be recovered for the M's

A1cso*:obtains the equation (must be equal to 0) or states k = -1 following correct work. Do not allow recovery from incorrect statements as shown above for the final mark - all may lead to the correct answer but are A0. But if there are no incorrect statements e.g. cancelling of denominators may be implied for the A. Watch out

for an incorrect $z = \frac{3w+1}{1-w}$ which also leads to a correct expression but loses both A marks.

Note: Alternatively methods are possible. Two are shown on the next page, but are not exhaustive. (b)

Allow both marks from cases where k = -1 is guessed or achieved from fortuitous work.

B1: Correct centre or radius. Accept unsimplified fractions for this mark.

B1: Correct centre **and** radius - fractions must be simplified.

Page 100 of 123

5(a) Alt	$z = x + iy, y = 4x \Longrightarrow w = \frac{z+1}{z-3} = \frac{x+4xi+1}{x+4xi-3} = \frac{(x+1)+4ix}{(x-3)+4ix} \times \frac{(x-3)-4ix}{(x-3)-4ix} = \dots$	M1
	$(u+iv=)\frac{(17x^2-2x-3)-16ix}{(x-3)^2+16x^2}$ oe	A1
	$\Rightarrow u = \frac{17x^2 - 2x - 3}{(x - 3)^2 + 16x^2} v = \frac{-16x}{(x - 3)^2 + 16x^2}$ $\Rightarrow 3u^2 + 3v^2 - 2u + v = \dots$	d M1
	$\Rightarrow \Rightarrow 3u^{2} + 3v^{2} - 2u + v - 1 = 0 * \text{ or states } k = -1$	ddM1A1cso*
		(5)
5(a) Alt II	$z = x + iy, y = 4x \Longrightarrow w = \frac{z+1}{z-3} = \frac{x+4xi+1}{x+4xi-3}$	
	$\Rightarrow (u+iv)((x-3)+4ix) = (x+1)+4ix \Rightarrow \dots + \dots = \dots$	M1
	u(x-3) - 4vx + i(v(x-3) + 4ux) = (x+1) + 4ix	A1
	$\Rightarrow u(x-3) - 4vx = (x+1) v(x-3) + 4ux = 4x$ $\Rightarrow x = \frac{3u+1}{u-4v-1} x = \frac{3v}{v+4u-4} \Rightarrow \frac{3u+1}{u-4v-1} = \frac{3v}{v+4u-4}$	dM1
	$(3u+1)(v+4u-4) = 3v(u-4v-1) \Longrightarrow 12u^2 + 12v^2 - 8u + 4v - 4 = 0$ $\implies 3u^2 + 3v^2 - 2u + v - 1 = 0*$	ddM1A1cso*
		(5)
Notes		

(a) Alt I

M1: Uses y = 4x and z = x + iy in the expression for w and multiplies through by complex conjugate of denominator

A1: Correct expression in terms of x (oe)

dM1: Replaces w with u + iv and equates real and imaginary parts and substitutes into the LHS of given equation. Dependent on previous M mark.

ddM1: Proceeds simplify the expression putting over common denominator. They are unlikely to make much progress at this stage in this method. **Dependent on both previous M marks.**

A1cso*: Correctly shows the expression equates to 0 and gives minimal conclusion.

(a) Alt II

M1: Uses y = 4x and z = x + iy in the expression for w and equates to u + iy, cross multiples and expands. A1: Correct expression with the i² terms simplified.

dM1: Equates real and imaginary parts and proceeds to eliminate *x* solving simultaneously. **Dependent on previous M mark.**

ddM1: Proceeds to simplify by cross multiplying and expanding to at least eliminate *uv* terms. **Dependent on both previous M marks.**

A1cso*: Correctly shows the expression required holds. As main scheme.

Question Number	Scheme	Marks
6(a)	$y = \sec x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \sec x \tan x$ $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (\sec x \tan x) \tan x + \sec x (\sec^2 x) (= \sec x \tan^2 x + \sec^3 x)$	M1
	$\frac{d^2 y}{dx^2} = \sec x \left(\sec^2 x - 1\right) + \sec^3 x = 2\sec^3 x - \sec x$ $\Rightarrow \frac{d^3 y}{dx^3} = 6\sec^2 x \left(\sec x \tan x\right) - \sec x \tan x$ or $\frac{d^3 y}{dx^3} = 2\sec x \tan x \sec^2 x + \tan^2 x \sec x \tan x + 3\sec^2 x \sec x \tan x$	d M1
	$\frac{\mathrm{d}x^{2}}{\left(\frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = 5\sec^{3}x\tan x + \sec x\tan x\left(\sec^{2}x - 1\right) = 6\sec^{3}x\tan x - \sec x\tan x\right)}$ $\Rightarrow \frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = \sec x\tan x\left(6\sec^{2}x - 1\right)$	dd M1 A1
		(4)
(b)	$\sec\left(\frac{\pi}{3}\right) = 2, \ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \Rightarrow f\left(\frac{\pi}{3}\right) = 2, \ f'\left(\frac{\pi}{3}\right) = 2\sqrt{3}, \ f''\left(\frac{\pi}{3}\right) = 14, \ f'''\left(\frac{\pi}{3}\right) = 46\sqrt{3}$	M1
	$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots$ $\Rightarrow 2 + 2\sqrt{3}\left(x - \frac{\pi}{3}\right) + 7\left(x - \frac{\pi}{3}\right)^2 + \frac{23\sqrt{3}}{3}\left(x - \frac{\pi}{3}\right)^3$	d M1 A1
		(3)
(c)	$\left(\sec\frac{7\pi}{24}\approx\right) = 2 + 2\sqrt{3}\left(-\frac{\pi}{24}\right) + 7\left(-\frac{\pi}{24}\right)^2 + \frac{23\sqrt{3}}{3}\left(-\frac{\pi}{24}\right)^3 = \dots$	M1
	$\sec \frac{7\pi}{24} \approx 1.636709263 \approx 1.637$	A1
		(2)
Notes		Total 9

M1: Differentiates twice and obtains expression for second derivative allowing for sign errors only

dM1: **Dependent on previous M mark.** Differentiates again and obtains expression for third derivative allowing for sign errors only (which could come from incorrect signs in trig identities)

ddM1: **Dependent on both previous M marks.** Obtains an answer of the correct form or values for *p* and *q*. Allow slips from their third derivative but any trig identities used can only have errors in sign.

A1: Fully correct expression or values for p and q

Note: If they decide not to work in sec x and tan x the main scheme still applies – see Alt next page. Allow "meet in the middle" approaches that determine the values of p and q

(b)

M1: Uses sec x and their three derivatives to attempt to find values for $f\left(\frac{\pi}{3}\right)$, $f'\left(\frac{\pi}{3}\right)$, $f''\left(\frac{\pi}{3}\right)$ and $f'''\left(\frac{\pi}{3}\right)$

evidenced by values for each with at least 2 correct if no method seen. May be recovered by substitution of values into formula if not all listed.

dM1: **Dependent on previous M mark.** Uses a correct Taylor series with all four of their values. Series must be correct for their values but allow slips if a correct formula is quoted.

Page 102 of 123

A1: Correct series with coefficients in a simplest form e.g., allow $\sqrt{12}$ for $2\sqrt{3}$, $\frac{23}{\sqrt{3}}$ for $\frac{23}{3}\sqrt{3}$ Condone			
absence of sec $x =$ or $y =$ Must have had a correct third derivative in (a), though need not have been simplified to the form required (and allow if there was a correct third derivative which was incorrectly simplified if the correct answer is found).			
(c)			
M1: Shows evidence of substitution of $\frac{7\pi}{24}$ into their series of the right form (powers of $\left(x - \frac{\pi}{3}\right)$). If only a			
value is given score M0 unless it is the correct 4 s.f. value for their series (1.636709263 allowing awrt 1.637 if (b) is correct). You may need to check the answer.			
Note that $\sec \frac{7\pi}{24} = 1.642679632$			
6(a) Alt	$y = \sec x \Rightarrow y = (\cos x)^{-1} \Rightarrow \frac{dy}{dx} = -(\cos x)^{-2}(-\sin x) = \frac{\sin x}{\cos^2 x}$	MI	
	$\frac{d^2 y}{dr^2} = \frac{\cos^2 x \cos x - 2 \sin x \cos x (-\sin x)}{\cos^4 x}$	MI	
	$\frac{d^2 y}{dx^2} = \frac{\cos^3 x + 2\cos x (1 - \cos^2 x)}{\cos^4 x} = \frac{2\cos x - \cos^3 x}{\cos^4 x} = 2(\cos x)^{-3} - (\cos x)^{-1}$	dM1	
	$\Rightarrow \frac{\mathrm{d}^{3} y}{\mathrm{d} x^{3}} = -6(\cos x)^{-4}(-\sin x) + (\cos x)^{-2}(-\sin x)$	•••••	
	$\frac{d^3 y}{dx^3} = \frac{6\sin x}{\cos^4 x} - \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos^2 x} \left(\frac{6}{\cos^2 x} - 1\right) = \sec x \tan x \left(6\sec^2 x - 1\right)$	dd M1 A1	
		(4)	
Notes			
Mark as per main scheme allowing sign slips only - forms correct at each stage.			

Question Number	Scheme		
7(a)	$z = y^{-2} \Rightarrow \qquad y^2 = z^{-1} \Rightarrow \qquad y = z^{-\frac{1}{2}} \Rightarrow$ $\frac{dz}{dy} = -2y^{-3} \text{ or } 1 = -2y^{-3} \frac{dy}{dz} \qquad 2y \frac{dy}{dz} = -z^{-2} \qquad \frac{dy}{dz} = -\frac{1}{2}z^{-\frac{3}{2}}$	B1	
	$\frac{dy}{dx} = \frac{dz}{dx} \cdot \frac{dy}{dz} \text{ (oe)} \Rightarrow \text{e.g.}, \frac{dy}{dx} = -\frac{1}{2}y^3 \frac{dz}{dx}, \frac{dy}{dx} = -\frac{1}{2}z^{-\frac{3}{2}}\frac{dz}{dx}$	M1 A1	
	$x\frac{dy}{dx} + y + 4x^{2}y^{3}\ln x = 0 \implies \text{e.g.},$ $-\frac{1}{2}xy^{3}\frac{dz}{dx} + y + 4x^{2}y^{3}\ln x = 0 \qquad -\frac{1}{2}xz^{-\frac{3}{2}}\frac{dz}{dx} + z^{-\frac{1}{2}} + 4x^{2}z^{-\frac{3}{2}}\ln x = 0$	dM1	
	$\frac{dz}{dx} - \frac{2}{xy^2} - 8x \ln x = 0 \qquad \qquad \frac{dz}{dx} - \frac{2z}{x} - 8x \ln x = 0$ $\Rightarrow \frac{dz}{dx} - \frac{2z}{x} = 8x \ln x *$	A1*	
		(5)	
(b)	$(\text{IF}=) e^{\int -\frac{2}{x}(dx)}$	M1	
	$= e^{-2\ln x} \left(=x^{-2}\right)$	A1	
	$x^{-2}z = \int x^{-2} (8x \ln x) [dx]$	M1	
	E.g. Parts: $\int x^{-1} \ln x dx$: $(u = \ln x, u' = x^{-1}, v' = x^{-1}, v = \ln x)$		
	$\Rightarrow I = (\ln x)^2 - kI \Rightarrow I = p(\ln x)^2$	M1	
	Or substitution: $t = \ln x$, $\frac{dt}{dx} = x^{-1} \implies I = k \int x^{-1} \ln x \cdot x dt = k \int t dt = pt^2$		
	$\int x^{-1} \ln x dx = \frac{1}{2} \left(\ln x \right)^2 [+c]$	A1	
	$x^{-2}z = 4(\ln x)^{2} + k \implies z = 4x^{2}(\ln x)^{2} + kx^{2}$		
	$\Rightarrow y^2 = \frac{1}{4x^2 \left(\ln x\right)^2 + kx^2} \text{ oe}$	A1	
		(6) Total 11	
Notes (a)			
B1: Any correct equation following differentiation of the given substitution. Could be implied.			
M1: Uses a correct chain rule to obtain an equation linking $\frac{dy}{dx} \left(\text{ or } \frac{dx}{dy} \right)$ and $\frac{dz}{dx} \left(\text{ or } \frac{dx}{dz} \right)$			
A1: Any correct equation			
Note that the first three marks could be scored by a first step of, e.g.: $dz = 2 dv = dv = 2 dz = dv = 1 -\frac{3}{2} dz$			
$\frac{dz}{dx} = -2y^{-3}\frac{dy}{dx} \text{or} 2y\frac{dy}{dx} = -z^{-2}\frac{dz}{dx} \text{or} \frac{dy}{dx} = -\frac{1}{2}z^{-2}\frac{dz}{dx}$			
dM1: Dependent on previous M mark. Substitutes their $\frac{dy}{dx}$ into differential equation (I). Need not replace			
fully for this mark.			

Page 104 of 123

- A1*: Fully correct proof with no errors. There must be an intermediate line of working between the line where they substitute into DE(I) and the given answer.
- Note: Use Review for any incorrect but potentially creditworthy attempts that "meet in the middle" or use (II) \Rightarrow (I)

- M1: Correct form for integrating factor. Allow $e^{\int \frac{k}{x}}$ and missing dx
- A1: Correct IF in any form
- M1: Obtains IF $\cdot z = \int IF \cdot (8x \ln x) [dx]$ Correct for their IF and z not y
- M1: Must have achieved an integral of form $k \int x^{-1} (\ln x) [dx]$. Correct form following integration of $x^{-1} \ln x$ (constant not required):

 $\int x^{-1} \ln x \, \mathrm{d}x \Longrightarrow p \left(\ln x \right)^2 \, [+c]$

The work in the scheme above is sufficient but you do not need to scrutinise the details, accept work that leads to the correct form.. Condone " $\ln x^2$ " for this mark

- A1: Correct integration (constant not required) $\ln x^2$ is A0 unless recovered must see $(\ln x)^2$ but allow $\ln^2 x$
- A1: Any correct equation in $y^2 = ...$ form e.g., $y^2 = \left[x^2 \left(4 \ln^2 x + k\right)\right]^{-1}$ Constant may appear as a multiple, e.g., 8c

FP2_2023_06_MS

Question Number	Scheme		
8	$r = 6(1 + \cos\theta) \qquad 0 \leqslant \theta \leqslant \pi$		
(a)	$\theta = 0, r = 6(1 + \cos 0) \Longrightarrow 12 \text{ or } (12, 0)$		
		(1)	
(b)	$\frac{d}{d\theta} (r\sin\theta):$ $= 6\sin\theta (1+\cos\theta) \Rightarrow = 6\sin\theta + 6\sin\theta\cos\theta \Rightarrow$ $6\sin\theta (-\sin\theta) + 6\cos\theta (1+\cos\theta) = 6\cos\theta + 6(\cos^2\theta - \sin^2\theta) = 6\sin\theta + 3\sin 2\theta \Rightarrow$ $6\cos\theta + 6(\cos^2\theta - \sin^2\theta) = 6\cos\theta + 6\cos2\theta$	M1	
	$\Rightarrow 2\cos^2\theta + \cos\theta - 1 = 0$ $\left[(2\cos\theta - 1)(\cos\theta + 1) = 0 \Rightarrow \right] \cos\theta = \frac{1}{2} [\text{or} - 1]$	dM1	
	$\theta = \frac{\pi}{3}$ $r = 6\left(1 + \cos\frac{\pi}{3}\right) = 9$ or $\left(9, \frac{\pi}{3}\right)$	A1 A1	
8(c) $\frac{\left[\frac{1}{2}\right]\int r^2 d\theta = \left[\frac{1}{2}\right]\int 36(1+\cos\theta)^2 \left[d\theta\right]}{\int r^2 d\theta = 36\int (1+2\cos\theta+\cos^2\theta) \left[d\theta\right] = 36\int (\frac{3}{2}+2\cos\theta+\frac{1}{2}\cos 2\theta) \left[d\theta\right]}$		M1	
		M1	
	$\int (a+b\cos\theta+c\cos2\theta) [d\theta] = a\theta \pm b\sin\theta \pm \frac{c}{2}\sin2\theta$	M1	
	$18\left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right]_{\dots}^{\dots}$		
	$18\left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}} = 18\left(\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8}\right)\left[-0\right] \qquad \left[=9\pi + \frac{81}{4}\sqrt{3}\right]$	d M1	
	E.g. $OB = 6\left(1 + \cos\frac{\pi'}{3}\right) \Rightarrow BQ = 6\left(1 + \cos\frac{\pi'}{3}\right)\sin\frac{\pi'}{3} \left[=\frac{9\sqrt{3}}{2}\right]$	M1	
	$BP = 12 - 9\cos\frac{\pi}{3} = 12 - \frac{9}{2} = \frac{15}{2}$ $\Rightarrow \text{ area } OBPA = \frac{1}{2} \left(12 + \frac{15}{2} \right) \left(\frac{9\sqrt{3}}{2} \right) \text{ or } \frac{1}{2} \times \frac{9}{2} \times \frac{9\sqrt{3}}{2} + \frac{9\sqrt{3}}{2} \times \frac{15}{2} \left[= \frac{351}{8} \sqrt{3} \right]$	A1	
	area of region $R = \frac{351}{8}\sqrt{3} - \frac{81}{4}\sqrt{3} - 9\pi = \frac{189}{8}\sqrt{3} - 9\pi$	A1	
		(8)	
Notes		Total 13	
(a)			

B0: Correct values for θ and *r* or correct coordinates. Condone (0, 12).

(b)

M1: Differentiates $r \sin \theta$. Allow sign errors only. The "6" may be missing

dM1: **Dependent on previous M mark.** Uses correct identity/identities to reach a 3TQ in $\cos\theta$ and solves.

Apply usual rules or by calculator must obtain at least one real consistent solution where $-1 \leq \cos \theta \leq 1$.

Accept $\theta = \frac{\pi}{3}$ following a correct derivative set equal to zero to imply the M if no incorrect working shown

(by calculator or by inspection).

A1: Either r or θ correct.

A1: Both coordinates correct. Only accept $\frac{\pi}{3}$ and 9. Withhold last mark if additional answers offered and not rejected, but isw after correct answers seen if only a miscopy is made.

Page 106 of 123

- M1: Attempts $\int r^2 d\theta$ which may include the $\frac{1}{2}$ for the area formula. The multiple 36 may be missing or wrong. Condone poor squaring allow this mark if there are only two terms.
- M1: Uses $\cos^2 \theta = \pm \frac{1}{2} \cos 2\theta \pm \frac{1}{2}$ and obtains an integrand of the form $a + b \cos \theta + c \cos 2\theta$ (constants may be uncollected)
- M1: Integrates and obtains a form $a\theta \pm b\sin\theta \pm \frac{c}{2}\sin 2\theta$ (sign errors on trig terms only). May be two terms in θ
- A1: Fully correct expression for the area of the sector after integration. Ignore limits but $\frac{1}{2}$ must have been used or appear later.
- dM1: Dependent on previous M mark. Evidence of substitution of "correct" limits into the integral, so their

 $\frac{\pi}{3}\left(\text{provided } 0 < \theta < \frac{\pi}{2}\right) \text{ and the lower limit must be 0 and lead to zero but this can be implied by omission.}$

M1: Correct method for the perpendicular distance between l_1 and the initial line with their r and

$$\theta$$
 (provided $0 < \theta < \frac{\pi}{2}$) for point *B*. This may only be seen embedded in their attempt at an area, so

may be implied if not explicit. E.g. look for "their r sin their $\frac{\pi}{3}$ " or may find r again from the equation of curve.

- A1: Correct expression for area of trapezium OBPA may be given as as a sum of separate areas, e.g. triangle OBQ + rectangle QBPA. Other formulations are possible.
- A1: Correct answer in the correct form or $p = \frac{189}{8}$ or exact equivalent, q = -9

Useful diagram:

(c)

Page 107 of 123

January 2024 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$\frac{1}{x+2} > 2x+3$		
	Examples: $\frac{1 - (x+2)(2x+3)}{x+2} > 0 \Longrightarrow 2x^{2}$	+7x+5=0	
	$x+2 > (2x+3)(x+3) = 0 \text{ or } 2x^3$	$(x^2)^2 + 11x^2 + 19x + 10 = 0$	
	$\frac{1}{x+2} = 2x+3 \Longrightarrow (2x+3)(x+2) -$ Uses algebra to obtain a 3TQ, $(x+2)$ multiplied b	$1 = 2x^{2} + 7x + 5 = 0$ y a 3TQ or a 4TC. Allow slips and	M1
	condone incorrect inequality signs but the first a appropriate so do not accept work with e.g., $(2x)$ implied by solutions. Graphical attempts req	Igebraic step should be otherwise +3) $(x+2)=0$. The "= 0" can be uire intersections to be found	
	algebraically. Squaring first is acceptable so $(4x^4 + 28x^3 + 73x^2 + 84x)$	allow M1 for obtaining a 5TQ $+35=0$)	
	e.g., $(2x+5)(x+1)=0 \Rightarrow$ Both -1 and $-\frac{5}{2}$ from incorrect cvs. May Allow solvin	m appropriate work and no extra only be seen in the solution set. g a 3TQ etc. by calculator.	A1
	x = -2 Identifies -2 as a cr solution set. This is th algebraic manipula working e.g.	itical value. May only be seen in e only mark available if there is no tion seen. Allow from any or no , from $(2x+3)(x+2)=0$	B1
	$\Rightarrow x < -\frac{5}{2}, -2 < x < -1 \text{ or e.g.}, (-1)$ M1 : For the regions $x < a_1 - 2 < x < b$ with real cy	$\infty, -2.5$, $(-2, -1)$ us $a < -2$ and $b > -2$ but condone	
	b < x < -2 as a notational slip Condone any non-strict inequality signs and p dependent but must follow an attempt a A1: Correct solution set in any form. Do not is subsequently incorrectly amended. Allow all ma sign was seen earlier in th	o for this mark. oor notation for this mark. Not algebraic manipulation. w if the correct inequalities are rks even if an incorrect inequality e working.	M1 A1
	Examples: $-\frac{5}{x} > x \text{ or } -2 < x < -1 \text{ M1 A1} \qquad x < -1$	$\frac{5}{2}$ and $-2 < x < -1$ M1 A1	
	2 (Accept any word between the two $x < -\frac{5}{2}, -1 < x < -2$ M1 A0 (2 ro correct regions) notational slip)	
	$\left(-\infty,-\frac{5}{2}\right)\cap\left(-2,-1\right)$ M1A0 (incorrect symbol – allow	v "and") $\left[-\infty, -\frac{5}{2} \right] \cup \left[-2, -1 \right] $ M1A0	
	$x < -\frac{5}{2} - 2 < x x < -1 M0 \; A$	0 (insufficient)	(5)
			Total 5
Question	Scheme	Notes	Marks
---------------	---	---	------------
Number			
2(a)	(i) $z = 6 - 6\sqrt{3}i \Rightarrow z = \sqrt{6^2 + (6\sqrt{3})^2} = 12$	+12 only. Accept if just stated	B 1
	(ii) e.g., $\arg z = -\arctan z$	$n\frac{6\sqrt{3}}{6}$	
	Attempts an expression for a relevant angle. Look for $\pm \arccos$	$ \tan\left(\pm\frac{6\sqrt{3}}{6}\right) \text{ or e.g., } \pm \tan^{-1}\left(\pm\frac{1}{\sqrt{3}}\right) $	M1
	If arctan is not seen allow e.g., $\tan \alpha = \frac{6\sqrt{3}}{6} \Rightarrow \alpha =$	$=\frac{\pi}{3}$ with α correct for their tan α	
	If using sin or cos the hypotenuse	e must be their 12	
	arg z or arg or argument (of	$z\Big) = -\frac{\pi}{3} *$	A 11-14
	A correct proof with no incorrect work/statements	LHS required. Allow " $\theta =$ " if	AI*
	consistent , e.g., $\theta = -\frac{\pi}{3}$ cannot follow	ow " $\tan\theta = +\sqrt{3}$ "	
(ii)	$z = 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } \cos\theta$	$= \frac{1}{2} \operatorname{orsin} \theta = -\frac{\sqrt{3}}{2} [M1] \Longrightarrow \arg z = -\frac{\pi}{3} [A1^*]$	
Way 2	M1: Factorises out 12 and writes in trig or exp form or	identifies $\cos\theta = \frac{1}{2}$ and $\sin\theta = -\frac{\sqrt{3}}{2}$	
	A1: Acceptable statement with all work correct		
(**)	$z = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) =$	$= 6 - 6\sqrt{3}i [M1] \Longrightarrow \arg z = -\frac{\pi}{3} [A1^*]$	
(II) Way 3	M1: Assumes result, writes correctly for their	12 and attempts $a + ib$ form	
vv u y e	A1: Obtains $6-6\sqrt{3}i$ and makes acceptable st	atement with all work correct	
			(3)
(b)	$z = "12" \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) \right) \text{ or } "12" e^{-\frac{\pi}{3}i} [n]$	o missing "i" unless recovered]	
	Correct trig or exp. form with their 12. Could be implied	ed by their z^4 in trig or exp. form e.g.,	M1
	$("12"e^{-\frac{\pi}{3}})^4$ Allow equivalent values of θ e.g. $\frac{5\pi}{3}$	and use of e.g., $\sin\left(-\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right)$.	
	Condone poor bracketing. Allow this mark if $+2k\pi$.	$-2k\pi$, $\pm 2k\pi$ appears with argument	
	$z^{4} = 20736 \left(\cos \left(-\frac{4\pi}{3} \right) + i \sin \left(-\frac{4\pi}{3} \right) \right) \text{ or } 20736 \left(\cos \left(-\frac{4\pi}{3} \right) \right)$	$\cos -\frac{4\pi}{3} + i\sin -\frac{4\pi}{3}$ or $20736e^{-\frac{\pi}{3}}$	
	Correct z^4 in any form. 12 ⁴ evaluated and arg. of $-\frac{4\pi}{3}$	(not just $4 \times -\frac{\pi}{3}$) or $\frac{2\pi}{3}$ only although	Δ1
	may use e.g., $\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right)$. No "k"s. Co	ondone an "unclosed" bracket.	111
	Only accept $-10368 + 10368\sqrt{3}i$ or $20736\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$	i) provided evidence of de Moivre.	
			(2)

Question Number	Scheme	Notes	Marks
2(c)	$w = z^{\frac{1}{2}} = (\pm)\sqrt{"12"} \left(\cos\left(\frac{-\frac{\pi}{3}}{2}\right) + i \sin\left(\frac{-\frac{\pi}{3}}{2}\right) \right) \text{ or e.g., } (\pm)"2\sqrt{3}"e^{-\frac{\pi}{6}i}$ [no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^4 used for z. Allow this mark if $+2k\pi, -2k\pi, \pm 2k\pi$ appears with argument		M1
	$w = 3 - \sqrt{3}i,$ A1ft: One correct exact root in $a + ib$ or $c(a + numerical trig expressions)$ ft the A1: Both exact roots (no others) correct in a not numerical trig ex $a = (\pm) \sqrt{12} \frac{\sqrt{3}}{2}, (\pm) \frac{\sqrt{3}}{2}$ Accept $\pm (3 - \sqrt{3}i)$ but just $\pm 3 - \sqrt{3}i$	$-3 + \sqrt{3}i \text{ oe}$ +ib) form (a, b, c may be unsimplified but not $ir 12 \text{ only } i.e.(\pm)\sqrt{"12"}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ +ib form -a and b may be unsimplified (but pressions) e.g. accept $\frac{5}{2} b = (\mp)\frac{\sqrt{12}}{2}, \ (\mp)\frac{2\sqrt{3}}{2}$ is A1 A0. Just $\pm\sqrt{3}\left(\sqrt{3} - i\right)$ is A1 A0	A1ft A1
	Note: $w^2 = r^2 (\cos 2\theta + i \sin 2\theta) = z =$	\Rightarrow r, θ , w = is an acceptable approach	(3)
Alt	$w^{2} = z \Longrightarrow (a + ib)^{2} = a^{2} - b^{2} + 2abi =$ $b = -\frac{3\sqrt{3}}{a} \Longrightarrow a^{2} - \frac{27}{a^{2}} = 6 \Longrightarrow a^{4} - 6a^{2} - 27 = ($ M1 : From a correct starting point, expands a two equations in <i>a</i> and <i>b</i> and obtain $w = 3 - \sqrt{3}$ A1 : One correct exact root in <i>a</i> + <i>ib</i> or <i>c</i> (A1 : Both exact roots (no others) correct in	$a^{2}-6\sqrt{3}i \Rightarrow a^{2}-b^{2} = 6, \ 2ab = -6\sqrt{3}$ and equates real and imaginary parts to form at least one value for both <i>a</i> and <i>b</i> $i, -3 + \sqrt{3}i$ a + ib form (<i>a</i> , <i>b</i> , <i>c</i> may be unsimplified) a + ib form - <i>a</i> and <i>b</i> may be unsimplified	Total 9
			Total 8

Question
NumberSchemeNotesMarks3(a)
$$r$$

 $\sqrt{r(r+1)} + \sqrt{r(r-1)}$
 $\sqrt{r(r+1)} - \sqrt{r(r-1)}$
 2 A correct multiplier to rationalise
the denominator scen or implied by
correct workM1 $= \frac{r(\sqrt{r(r+1)} - \sqrt{r(r-1)})}{r(r+1) - r(r-1)} = \sqrt{r(r+1)} - \sqrt{r(r-1)}$
 2 α correct multiplier to rationalise
the denominator scen or implied by
correct workM1 $= \frac{r(\sqrt{r(r+1)} - \sqrt{r(r-1)})}{r(r+1) - r(r-1)} = \sqrt{r(r+1)} - \sqrt{r(r-1)}$
 2 α or $A = \frac{1}{2}$
 $A = \frac{1}{2}$ A1Correct expression or correct value for A. Condene poor notation if intention clear.
There must be (minimal) correct supporting working.A1 $= \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} (\sqrt{r(r+1)} - \sqrt{r(r-1)}) = \frac{r(r+1) - r(r-1)}{r(r+1) - r(r-1)} = \frac{r}{r^{2} + r^{-r^{2} + r^{-r^{2} + r}} - r^{2} = A = \frac{1}{2}$
M1: Correctly makes A the subject A1: Correct completion with one intermediate fraction(b) $\sum_{n=1}^{n} \sqrt{r(r+1)} + \sqrt{r(r-1)} = \frac{1}{2} r \begin{pmatrix} \sqrt{r(r-1)} - \sqrt{r(r-1$

Number	Scheme	Notes	Marks
$3(c)$ $\sum r =$	$=\frac{1}{2}n(n+1)$ e.g., sight of $k \times = \sqrt{\frac{1}{2}n(n+1)}$	States or uses the correct summation formula for integers	M1
$\frac{k}{2}\sqrt{n(n)}$	$\overline{(k+1)} = \sqrt{\frac{1}{2}n(n+1)} \Longrightarrow \frac{k}{2} = \sqrt{\frac{1}{2}} \Longrightarrow k = \sqrt{2}$	$\sqrt{2}$ only (Not \pm). $k = \sqrt{2}$ must not come from a clearly incorrect equation.	A1
		-	(2)
			Total 7

Question Number	Scheme		Notes	Marks
4(a)	$y = \tan\left(\frac{3x}{2}\right) \Rightarrow y' = \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$		Any correct first derivative. Not implied by $y'(\frac{\pi}{6}) = 3$	B1
	$\Rightarrow y'' = 2 \times \frac{3}{2} \sec\left(\frac{3x}{2}\right) \times \sec\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \times \frac{3}{2}$ $\left[= \frac{9}{2} \sec^2\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \right]$	Attem ks equi	inputs the second derivative achieving $\sec^2\left(\frac{3x}{2}\right)\tan\left(\frac{3x}{2}\right)$ or unsimplified valent. Not implied by $y''\left(\frac{\pi}{6}\right) = 9$	M1
	$\Rightarrow y''' = \frac{9}{2}\sec^2\left(\frac{3x}{2}\right)\sec^2\left(\frac{3x}{2}\right) \times \frac{3}{2} + \frac{9}{2}\tan\left(\frac{3x}{2}\right) \times 2 \times \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$ $\left[= \frac{27}{4}\sec^4\left(\frac{3x}{2}\right) + \frac{27}{2}\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right) + \frac{27}{2}\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right) + \frac{3}{2}\sec^2\left(\frac{3x}{2}\right) + \frac{3}{2}\sec^2\left(\frac{3x}{2}\right$	$\left \tan\left(\frac{3x}{2}\right) \right $	dM1: Attempts third derivative using the product rule, achieving $P \sec^4\left(\frac{3x}{2}\right) + Q \sec^2\left(\frac{3x}{2}\right) \tan^2\left(\frac{3x}{2}\right)$ or unsimplified equivalent. Requires previous M mark. A1: Correct differentiation. Accept unsimplified. Not implied by $y'''\left(\frac{\pi}{6}\right) = 54$	dM1 A1
	If $\sec^2\left(\frac{3x}{2}\right) = \tan^2\left(\frac{3x}{2}\right) + 1$ is used the identity expressions of consistent Note that replacing $\sec^2\left(\frac{3x}{2}\right)$ in $y'' \Rightarrow y'$	y must b t form sl $'' = \frac{27}{4}$ se	e used correctly and to score M marks nould be achieved. $c^{2}\left(\frac{3x}{2}\right) + \frac{81}{4}sec^{2}\left(\frac{3x}{2}\right)tan^{2}\left(\frac{3x}{2}\right)$	
	$y\left(\frac{\pi}{6}\right) = 1, y'\left(\frac{\pi}{6}\right) = 3, y''$ Attempts values (but allow numerical trig expression of the stated values or insertion in	$v''\left(\frac{\pi}{6}\right) =$ essions) f to a serie	$=9, y'''\left(\frac{\pi}{6}\right) = 54$ for y and their 3 derivatives at $\frac{\pi}{6}$ - accept s of the correct form	M1
	$(y =)1 + 3\left(x - \frac{\pi}{6}\right) + \frac{9}{2!}\left(x - \frac{\pi}{6}\right)$ Applies Taylor's correctly about $\frac{\pi}{6}$ with their v seen separately the work should imply a correct for following the correct general formul	$\left(\frac{\pi}{6}\right)^2$ alues/num primula but a stated.	$+\frac{54}{3!}\left(x-\frac{\pi}{6}\right)^3 + \dots$ merical trig expressions. If values are not at allow a recognisable attempt at the series Requires previous M mark.	dM1
	$(y=)1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2}\left(x-\frac{\pi}{6}\right)^2+9\left(x-\frac{\pi}{6}\right)^3+.$	Co fo Score	<pre>rrect expression with coeffs. in simplest orm. "y =" not required. Requires all</pre>	A1
	If e.g. $y'''(\frac{\pi}{6})$ is found by calculator but $y'(:$	x) and y	"(<i>x</i>) were seen award 1100110 max	(7)
	Note: with responses that work in sin and con- no loss of form when differentiating (sign a errors with product/quotient formulae). $y = \tan\left(\frac{3x}{2}\right) = \frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{3x}{2}\right)} \Rightarrow$ $y'' = \frac{\frac{9}{2}\cos^3\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right) + \frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin^3}{\cos\left(\frac{3x}{2}\right)\sin^3}$	$y' = \frac{\frac{3}{2}}{\frac{3}{2}}$	Equal to score M marks there must be ficient errors only, also allowing sign of identities must be correct. E.g: $\frac{\cos^2\left(\frac{3x}{2}\right) + \frac{3}{2}\sin^2\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{3x}{2}\right)}$ $\frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{3x}{2}\right)}$	
	$y''' = \frac{\frac{27}{4}\cos^{8}\left(\frac{3x}{2}\right) + 27\cos^{6}\left(\frac{3x}{2}\right)\sin^{2}\left(\frac{3x}{2}\right) + \frac{81}{4}\cos^{4}\left(\frac{3x}{2}\right)}{\cos^{8}\left(\frac{3x}{2}\right)}$	$\left(\frac{3x}{2}\right)\sin^4$	$\frac{\cos^4\left(\frac{3x}{2}\right)}{\left(\frac{3x}{2}\right)} = \frac{27}{4} + 27\tan^2\left(\frac{3x}{2}\right) + \frac{81}{4}\tan^4\left(\frac{3x}{2}\right)$	

Page 113 of 123

Question Number	Scheme	Notes	Marks
4(b)	$\left\{ y\left(\frac{\pi}{4}\right) = \right\} 1 + 3\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{9}{2}\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{9}{2}\left(\frac{\pi}{12}\right)^2$ or $1 + 3\left(\frac{\pi}{12}\right) + \frac{9}{2}\left(\frac{\pi}{12}\right)^2$ Substitutes $\frac{\pi}{4}$ into their expression for y of the three terms (series about $\frac{\pi}{6}$). Must have values If only a decimal value is given then it must be (2.255314325) If there is no working they must obtain an expression correct exact ft <i>a</i> , <i>b</i> and <i>c</i> for their series or 1	$-\frac{\pi}{6}\Big)^{2} + 9\left(\frac{\pi}{4} - \frac{\pi}{6}\right)^{3}$ +9 $\left(\frac{\pi}{12}\right)^{3}$ correct form with at least the first (not unevaluated trig expressions). the correct awrt 2.26 to score M1). ession with at least $a + b\pi + c\pi^{2}$ and $+\frac{\pi}{4} + c\pi^{2}$ with correct exact ft c	M1
	$=1 + \frac{\pi}{4} + \frac{\pi^2}{32} + \frac{\pi^3}{192} \text{ or } 1 + \frac{1}{4}\pi + \frac{1}{32}\pi^2 + \frac{1}{192}\pi^3$	Correct answer or values for <i>A</i> (32) and <i>B</i> (192). Can be awarded if full marks were not scored in (a).	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
5	$r^{2} = 100\cos^{2}\theta + 20\cos\theta\tan\theta + \tan^{2}\theta$	Any correct expression for r^2	B1
	$\left\{\frac{1}{2}\right\} \int_{0}^{\frac{\pi}{3}} r^2 \mathrm{d}\theta = \left\{\frac{1}{2}\right\} \int_{0}^{\frac{\pi}{3}} (100\cos^2\theta + 20\sin\theta + \tan^2\theta) \left\{\mathrm{d}\theta\right\}$	Attempts formula for the area with their r^2 which may not be expanded Condone missing $\frac{1}{2}$ and limits not required	M1
	$= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (50(1+\cos 2\theta)+20\sin \theta + \sin \theta)$ M1: Uses $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^2 \theta$ M1: Uses both $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^2 \theta$ Both M marks can be scored without the Condone mixed variable A1: Correct integral following $\cos^2 \theta = \frac{1}{2} + \frac{1}{2} \cos 2\theta$ $\cos \theta \tan \theta$ must be written as $\sin \theta$ (implied if ap The $\frac{1}{2}$ is required (it may be seen later) but limits/de variables if subsequent work rec	$ec^{2} \theta - 1 \Big \Big\{ d\theta \Big\}$ = $\pm sec^{2} \theta \pm 1$ in their r^{2} $e^{2} \theta = \pm sec^{2} \theta \pm 1$ in their r^{2} integral and the $\frac{1}{2}$. es. θ and $tan^{2} \theta = sec^{2} \theta - 1$. The propriately integrated later). θ are not needed. Allow mixed overs this.	M1 M1 A1
	$= \frac{1}{2} \Big[49\theta + 25\sin 2\theta - 20\cos \theta + \tan \theta \Big]_{0}^{\frac{\pi}{3}} \text{ or } \Big[\frac{49}{2} \theta + \frac{1}{2} \Big]_{0}^{\frac{\pi}{3}} \left[\frac{49}{2}$	$\frac{25}{2}\sin 2\theta - 10\cos \theta + \frac{1}{2}\tan \theta \bigg]_{0}^{\frac{\pi}{3}}$ in integrated forms: $\rightarrow\cos \theta$, $\sec^{2} \theta \rightarrow\tan \theta$. $\frac{1}{2}$ or limits required. Condone en later). Limits not required. . Allow mixed variables if this.	M1 A1
	$=\frac{1}{2}\left(\frac{49\pi}{3}+25\sin\frac{2\pi}{3}-20\cos\frac{\pi}{3}+\tan\frac{\pi}{3}-29\cos\frac{\pi}{3}+\tan\frac{\pi}{3}-29\cos\frac{\pi}{3}+\tan\frac{\pi}{3}-29\cos\frac{\pi}{3}+\tan\frac{\pi}{3}-29\cos\frac{\pi}{3}+20\right)$ or $\frac{49\pi}{6}-20\cos\frac{\pi}{3}+20$ or $\frac{49\pi}{6}-20\cos\frac{\pi}{3}+20$ Applies the correct limits to an expression of the formula ($p,q,r,s \neq 0$) Allow slips but there must be a clear must only subtract the value of their r , e.g. if $r = -20\cos\frac{\pi}{3}+20$ or $+20$. Allow mixed variables if the	-(0+0-20+0)) + $\frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10$ m $p\theta + q \sin 2\theta + r \cos \theta + s \tan \theta$ attempt to substitute, and they 20 work must have or imply substitution recovers this.	M1
	$=\frac{1}{12}\left(98\pi + 81\sqrt{3} + 60\right)$	Correct answer or values for <i>a, b & c</i>	A1
	Note that there are other viable routes through the integrati	on e.g., use of integration by parts	(9)
			Total 9

Page 115 of 123

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 8\mathrm{e}^{-3t}$	<i>t</i> 0	
(a)	$m^{2} + 6m + 13 = 0 \Longrightarrow m = \frac{-6 \pm \sqrt{36 - 52}}{2}$ $\left\{ = -3 \pm 2i \right\}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule: $m^2 + 6m + 13 = 0 \Longrightarrow \left(m \pm \frac{6}{2}\right)^2$	$^{2} \pm q \pm 13 = 0, \ q \neq 0 \Longrightarrow m = \dots$	
	CF examples: $(x =) e^{-3t} \left(A \cos 2t + B \sin 2t \right)$ or $(x =) A e^{-3t} \cos \left(-2t\right) + B e^{-3t} \sin \left(-2t\right)$ or $(x =) P e^{(-3+2i)t} + Q e^{(-3-2i)t}$ or $(x =) e^{-3t} \left(P e^{2it} + Q e^{-2it} \right)$	Correct complementary function in any form, allow if the " $x =$ " is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	$PI: \left\{ x = \right\} \lambda e^{-3t}$	Correct form for the particular integral selected. Must include λe^{-3t} but accept with any extra terms that correctly disappear when coefficients found. Accept "PI=". If λe^{pt} is used $p = -3$ must be seen later.	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\lambda \mathrm{e}^{-3t} ; \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 9\lambda \mathrm{e}^{-3t}$ $\implies 9\lambda \mathrm{e}^{-3t} + 6\left(-3\lambda \mathrm{e}^{-3t}\right) + 13\lambda \mathrm{e}^{-3t} = 8\mathrm{e}^{-3t}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of <i>t</i>) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9\lambda - 18\lambda + 13\lambda = 8 \Rightarrow \lambda = \dots (2)$	Proceeds to find the value of the constant following use of a PI of the correct form . Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x = "e^{-3t} \left(A\cos 2t + B\sin 2t \right) " + 2e^{-3t}$	Correct general solution ft on their CF only – any CF provided it has at least one constant and is in terms of t. Must have $x =$ Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form λte^{-3} is B0M1dN Only condone incorrect variables if they are refirst A1.	covered but refer to the note for the	(6)

Page 116 of 123

Question Number	Scheme		Notes	Marks
6(b)	$x = \frac{1}{2} \text{ at } t = 0$ $\Rightarrow \frac{1}{2} = A + 2 \left(\Rightarrow A = -\frac{3}{2}\right)$ Uses the initial condition for x in their GS to find a linear equation in one or two constants. Allow for GS = CF or CF + PI and the constant may come from the +PI			
	$x = e^{-3t} \left(A \cos 2t + B \sin 2t \right) + 2e^{-3t}$ $\frac{dx}{dt} = e^{-3t} \left(-2A \sin 2t + 2B \cos 2t \right) - 3e^{-3t} \left(A \cos 2t + B \sin 2t \right) - 6e^{-3t}$ Uses the product rule to differentiate their real GS obtaining an expression in terms of t of the correct form for their GS (sign and coefficient errors only – so do not allow e.g.,e^{pt} \rightarrowe^{qt}). Allow for GS = CF or CF + PI and does not have to include constants. If they work with a complex function e.g., $x = Pe^{(-3+2i)t} + Qe^{(-3-2i)t} + 2e^{-3t}$ progress is unlikely. This mark is not scored for work in (c)			
	$t = 0, \frac{dx}{dt} = \frac{1}{2} \Rightarrow \frac{1}{2} = 2$ Uses both initial conditions to find val GS = (CF with 2 constants) + PI(no constan	$B-3A-6 \Rightarrow B =$ ues for the 2 cons constants). One c on-zero.	(=1) stants (no others) in their onstant must be found to xs.	ddM1
	Examples: $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t \right) + 2t$ or $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t +$	$2e^{-3t}$ $2 = 2$ $\sin 2t$	Correct particular solution in any form in terms of t. Must be $x = \dots$ <u>unless</u> this was the only reason for final A0 in part (a) due to omission or e.g, " $y = \dots$ " was used	A1
				(4)
(c)	$\frac{dx}{dt} = e^{-3t} \left(3\sin 2t + 2\cos 2t\right) - 3$ Sets an expression for $\frac{dx}{dt} = 0$. Accept with	$e^{-3t}\left(-\frac{3}{2}\cos 2t + \sin t\right)$ h any unfound con	$(h 2t) - 6e^{-3t} = 0$ stants provided $\frac{dx}{dt} = f(t)$	M1
	$(3\sin 2t + 2\cos 2t) - 3 \left(-3\sin 2t + 2\cos 2t\right) - 3 \left(-3\cos $	$-\frac{3}{2}\cos 2t + \sin 2t - 6$ $\sin bt + c \cos bt + dt$ d c non-zero and bt wo constants were uires previous M	6 = 0 d = 0 or equivalent with b and d non-zero. re found for the CF and mark.	dM1
	$\cos 2t = \frac{12}{13} \Longrightarrow t = 0.1973955598 \Longrightarrow x \text{ or } a =$ Finds a value of t from $\cos kt = c \ (k \neq 1, positive)$ value of t to find a value of x (or Requires both	$=\frac{1}{2}e^{-3(0.1973)}\left(4-3\times\right)$ -1 < c < 1) and us a) via their PS. According to the constant of the cons	$\left(\frac{12}{13} + 2\sin(2 \times 0.1973)\right) =$ we their positive (or made cept a pair of stated values.	ddM1
	x or a = 0.553(116472)	9)	awrt 0.553	A1
				(4)
				Total 14

Page 117 of 123

Question Number	Scheme	Notes	Marks
7(a) Way 1	$w = \frac{z-3}{2i-z} \Longrightarrow 2iw - wz = z - 3 \Longrightarrow z = \dots$	Attempts to make z the subject and obtains any f(w)	M1
	$z = \frac{3+2iw}{w+1}$ or $\frac{-3-2iw}{-w-1}$	Any correct expression for z in terms of w	A1
	$=\frac{3+2iu-2v}{u+iv+1}\times\frac{u+1-iv}{u+1-iv}$ Applies $w = u + iv$ and a correct multiplier for their z see result from their z. Denominator must have had a "w". Not	n or implied by a correct te alternative route below.	M1
	$x+iy = \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv} = \frac{(3-2v)(u+1)+2uv+2u(u-1)^2+v}{(u+1)^2+v}$ $y = x+3 \text{ oe } \Rightarrow \frac{2u(u+1)-(3-2v)v}{(u+1)^2+v^2} = \frac{(3-2v)(u+1)^2+v}{(u+1)^2+v^2}$ Multiplies, extracts real and imaginary parts and uses them in the produce an equation in u and v only – no "i"s. Condone $y =$ slips with multiplier but denominator of z must here. Note: Just $2u(u+1)-(3-2v)v = (3-2v)(u+1)+2uv+3$ is	$\frac{u+1)i - (3-2v)vi}{2}$ $\frac{u+1) + 2uv}{1)^2 + v^2} + 3$ the equation $y = x + 3$ (oe) to i if recovered. Can follow ave had a "w" is M0 (lost denominators)	M1
	$2u(u+1) - (3-2v)v = (3-2v)(u+1) + 2uv + 3(u+1)^{2} + 3v^{2}$ $\Rightarrow u^{2} + 7u + v^{2} + v + 6 = 0$	Expands and simplifies to obtain an equation of a circle with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	Alternative for the above 3 marks (note this could be done by $x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \Rightarrow \left(x + i\left(x + 3\right)\right) \left(u + 1 + iv\right)$ M1: Applies $z = x + iy$, uses $y = x + 3$ and cross x(u+1) - v(x+3) + (x+3)(u+1)i + xvi = 3 $\Rightarrow ux + x - vx - 3v = 3 - 2v$, $ux + x + 3u + 3$ $\Rightarrow x = \frac{3 + v}{u + 1 - v}$, $x = \frac{-u - 3}{u + 1 + v}$ M1: Equates real and imaginary parts and makes $x = \frac{(3+v)(u+1+v)}{(3+v)(u+1+v)} = -(u+3)(u+1-v) \Rightarrow 3u + 3 + 3v + uv + v + v$ $\Rightarrow u^2 + v^2 + 7u + v + 6 = 0$	the subject twice $y^{2} = -u^{2} - u + uv - 3u - 3 + 3v$	
	$\Rightarrow u + v + hu + v + 6 = 0$ M1: Equates expressions for x to obtain a circle equation with $\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{7}{2}, -\frac{7}{2}\right)^2$ M1: Extracts the centre and/or radius from their circle equation or 5 real unlike terms. Circle equation must not be in terms of correct coordinate (but condone wrong sign) or the correct May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre:} (-g, -f)$ A1: For a correct centre or radius from a correct A1: For correct centre and radius from a correct Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}$ Allow exact equivalents for coordinates	th 4 or 5 real unlike terms $-\frac{1}{2}$) radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$ and however obtained, with 4 <i>z</i> or <i>w</i> . They must get one tradius for their circle. and radius = $\sqrt{g^2 + f^2 - c}$ <i>c</i> incle equation <i>z</i> circle equation <i>z</i> and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$ <i>g</i> /radius	M1 A1 A1
	*		(8)

Page 118 of 123

Question Number	Scheme	Notes	Marks
7(a) Way 2	$w = \frac{z-3}{2i-z} = \frac{x+iy-3}{2i-x-iy} = \frac{x-3+i(x+3)}{2i-x-i(x+3)}$ [Note that it is possible to replace x with y – 3]	M1: Uses $z = x + iy$ and y = x + 3 in the given transformation A1: Correct expression for w in terms of x	M1 A1
	$\frac{x-3+i(x+3)}{-x-i(x+1)} = u + iv \Longrightarrow x-3+i(x+3) = -xu + v(x+1) - iu(x+1) - $	Applies $w = u + iv$ and multiplies	M1
	$x-3 = -ux + vx + v, x+3 = -ux - u - vx$ $x = \frac{3+v}{1+u-v}, x = \frac{-3-u}{1+u+v}$	Equates real and imaginary parts and makes <i>x</i> the subject twice	M1
	$3+3u+3v+v+uv+v^{2} = -3-3u+3v-u-u^{2}+uv$ $\implies u^{2}+v^{2}+7u+v+6=0$	Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms.	dddM1
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(\frac{1}{2}\right)^2 = \frac{13}{2} \Rightarrow \frac{1}{2} \Rightarrow $	$\left(-\frac{7}{2}, -\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$	
	M1: Applies a correct process to extract the centre equation, however obtained, with 4 or 5 real unlike (but condone wrong sign) or radius corre	e and/or radius from a circle terms. One correct coordinate ect for their circle.	M1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Longrightarrow$ centre : $(-g, -g)$	$-f$), radius = $\sqrt{g^2 + f^2 - c}$	A1
	A1: For correct centre or radius from a con	rrect circle equation	
	A1: For correct centre and radius from a co- Centre as coordinates, $x/u=, y/v=$ or as $-\frac{7}{2}-\frac{1}{2}$	i and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$ (8)	
Way 3	e.g., 3 points on line are (0,3), (1,4) and (2,5) or $z_1 = 3i$, $z_2 = 1 + 4i$, $z_3 = 2 + 5i$	Attempts three points/complex numbers on $y = x + 3$ with 2 correct	M1
	$w = \frac{z-3}{2i-z} \Longrightarrow w_1 = \frac{3i-3}{-i}$ $w_2 = \frac{-2+4i}{-1-2i}$ $w_3 = \frac{-1+5i}{-2-3i}$	Correct transformed complex numbers	A1
	$w_1 = \frac{3i-3}{-i} \times \frac{i}{i} w_2 = \frac{-2+4i}{-1-2i} \times \frac{-1+2i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-1+2i}{-1+2i}$ At least two correct multipliers to remove "i" from deno (-1, 2) used). Requires 2 correct points/comm	$= \frac{-1+5i}{-2-3i} \times \frac{-2+3i}{-2+3i}$ minator seen or implied (one if other numbers on line	M1
	$w_1 = -3 - 3i$ $w_2 = -\frac{6}{5} - \frac{8}{5}i$ $w_3 = -1 - i$	Two correct complex numbers in $a + ib$ form or as points	M1
	6g + 6f - c = 18 e.g., $x^2 + y^2 + 2gx + 2fy + c = 0 \Rightarrow \frac{12}{5}g + \frac{16}{5}f - c = 0$ 2g + 2f - c = 0	Uses a correct general equation of a circle to form three simultaneous equations. All previous Ms required.	dddM1
	$\Rightarrow g = \frac{7}{2}, f = \frac{1}{2}, c = 6 \Rightarrow \text{centre } (-g, -f): \left(-\frac{7}{2}, -\frac{1}{2}\right) \text{ radia}$ M1: Solves and obtains at least one correct coordinat	$fus = \sqrt{g^2 + f^2 - c} = \frac{\sqrt{26}}{2} \text{ or } \sqrt{\frac{13}{2}}$ we (but condone wrong sign) or	M1 A1
	radius for their constant A1: Correct centre or radius from o	s correct work	A1
	A1: Correct centre and radius from c	correct work (8)	

Page 119 of 123

Question Number	Scheme	Notes	Marks
7(b) (i) & (ii)		 M1: Any circle with the whole interior indicated. Ignore any inconsistencies with their stated centre, value for radius (which may have been negative) or circle equation. If shaded, consider the shaded area but if not allow any credible indication such as an "R" inside the circle unless they have clearly indicated a segment. A1: Correct circle drawn in the correct position with whole interior shaded. Entirely in quadrants 2 & 3 and centre if marked in Q3 (if not marked then more than half of the circle in Q3). Condone if it appears that the area above the <i>x</i>-axis is greater than the area below provided the centre is indicated in Q3. Must be shaded but does not require a label. Circumference may be dotted/dashed line. Ignore incorrect labelling of centre/axes/intersections but requires full marks in (a). 	M1 (B1 on ePen) A1 (B1 on ePen)
			(2) Total 10

Question Number	Scheme	Notes	Marks
8(a)	Allow "single fraction" to be implied by sum/different denominator or a product of fractions. No further fraction	ce of fractions with same s in numerator/denominator.	

Page 120 of 123

$\frac{\left \frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} \Rightarrow}{\cos (2x + 2\sin^2 x) + 2\sin^2 x} \cos (2x + 2\sin^2 x) + 2\sin^2 x} \right = \frac{1}{2\sin x \cos x} \cos (2x + 1x + 2\sin^2 x) \cos (2x + 1x - 2\sin^2 x) \sin 2x} \cos (2x + 1x + 2\sin^2 x) \cos (2x + 1x - 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x} \cos (2x - 1x + 2\sin^2 x) \sin 2x \cos x} \sin (2x - 2x) \sin 2x \cos x} \sin x} \sin (2x - 2x) \sin 2x \sin x} \sin (2x - 2x) \sin x} \sin $		$\cot 2x \left\{ +\tan x \right\} = \frac{\cos 2x}{\sin 2x} \left\{ +\frac{\sin x}{\cos x} \right\}$	Uses $\cot 2x = \frac{\cos 2x}{\sin 2x}$ or e.g., $\frac{\cos 2x}{2\sin x \cos x}$	M1
AltFully correct proof with one of the two intermediate fractions seen. All notation correct - no mixed or missing arguments or e.g. sin x² for this mark.A1*Alt $\cot 2x \{+\tan x\} = \frac{1-\tan^2 x}{2\tan x} \{+\tan x\}$ Uses $\cot 2x = \frac{1-\tan^2 x}{2\tan x}$ M1 (3) $Uses \cot 2x = \frac{1-\tan^2 x}{2\tan x}$ M1 (a) $Uses \cot 2x = \frac{1-\tan^2 x}{2\tan x}$ M1 (a) $Uses correct identities e.g.,$ $\tan x = \frac{\sin x}{\cos x}$ oc $2 \tan x$ $Uses correct identities e.g.,$ $\tan x = \frac{\sin x}{\cos x}$ oc $\cos x$ $uses correct singlefraction in sin x and cos x butallow \frac{\sec^2 x}{2\tan x} following use ofsec^2 x = 1 + \tan^2 xA qualifying fraction must besech before\frac{1}{2\sin x\cos x} or \frac{1}{2\cos^2 x\sin x}A1(M1 onePen)\frac{1}{2\sin x\cos x} or \frac{1}{\sin 2x} = \csc 2x^*Fully correct proof with one ofthe two intermediate fractions\sin 2xA1(M1 onePen)\frac{1}{2\sin x\cos x} or \frac{1}{\sin 2x} = \csc 2x^*Fully correct proof with one ofthe two intermediate fractions\sin 2xA1*$		$\frac{\frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} \Rightarrow}{\frac{2\sin x \cos x}{2\sin x \cos x}} \Rightarrow$ e.g., $\frac{1 - 2\sin^2 x + 2\sin^2 x}{2\sin x \cos x}$ or $\frac{\cos^2 x - \sin^2 x + 2\sin^2 x}{2\sin x \cos x}$ $\frac{2\cos^2 x - 1 + 2\sin^2 x}{\sin 2x}$ or $\frac{\cos 2x + 1 - \cos 2x}{\sin 2x}$ OR $\frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow$ $\Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2\sin x \cos x}{\sin 2x} \Rightarrow e.g., \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}$ OR $\frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x} \Rightarrow$ $\frac{\cos x}{\sin 2x \cos x}$ or $\frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x}$	Uses sufficient correct identities e.g., $\cos 2x = 1 - 2\sin^2 x$ $\cos 2x = \cos^2 x - \sin^2 x$ $\cos 2x = 2\cos^2 x - 1$ $2\sin^2 x = 1 - \cos 2x$ $\cos 2x \cos x + \sin x \sin 2x = \cos(2x - x)$ to obtain a correct single fraction with numerator in terms of sin x and/or cos x or " $\cos 2x + 1 - \cos 2x$ ". A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation.	A1 (M1 on ePen)
Alt $\cot 2x \{ + \tan x \} = \frac{1 - \tan^2 x}{2 \tan x} \{ + \tan x \}$ Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ M1 $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x}$ oe $\cos x$ $\tan x = \frac{\sin x}{\cos x}$ oe $\tan x = \frac{\sin x}{\cos x}$ oe to obtain a correct single fraction in sin x and cos x but allow $\frac{\sec^2 x}{2 \tan x}$ following use of $\sec^2 x = 1 + \tan^2 x$ A qualifying fraction must be seen before $\frac{1}{2 \sin x \cos x}$ or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$ A1 (M1 on ePen) $\frac{1}{2 \sin x \cos x}$ or $\frac{1}{2 \sin x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$ Fully correct proof with one of the two intermediate fractions seen. All notation correct - no mind or minimizer arguments orA1*		$=\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$	Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. sin x^2 for this mark.	A1*
Alt $\cot 2x \{ + \tan x \} = \frac{1 - \tan^2 x}{2 \tan x} \{ + \tan x \}$ Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ M1 $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ $Uses \operatorname{correct} \operatorname{identities e.g.},$ $\tan x = \frac{\sin x}{\cos x}$ M1 $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ $2 \tan x$ $Uses \operatorname{correct} \operatorname{identities e.g.},$ $\tan x = \frac{\sin x}{\cos x}$ M1 $e.g., \frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{(\frac{\sin x}{\cos x})^2 + 1}{2 \sin x} \Rightarrow \frac{\cos x(\sin^2 x + \cos^2 x)}{2 \cos^2 x \sin x}$ $Uses \operatorname{correct} \operatorname{single}$ $tan x = \frac{\sin x}{\cos x}$ M1 $or \frac{\tan^2 x + 1}{2 \tan x} \{ \times \frac{\cos x}{\cos x} \} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $allow \frac{\sec^2 x}{2 \tan x}$ $following use of sec^2 x = 1 + \tan^2 x$ A1 $or \frac{\sec^2 x}{2 \tan x}$ $or \frac{\csc^2 x}{2 \cos^2 x \sin x}$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $or \frac{\sec^2 x}{2 \tan x}$ $or \frac{\cos x}{2 \cos^2 x \sin x}$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $or \frac{1}{2 \sin x \cos x}$ $or \frac{1}{2 \cos^2 x \sin x}$ $or \frac{1}{2 \sin x \cos x}$ $or \frac{1}{2 \sin x \cos x}$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $or \frac{1}{2 \sin x}$ $or \frac{1}{2 \cos^2 x \sin x}$ $or \frac{1}{2 \sin x \cos x}$ $or \frac{1}{2 \sin x \cos x}$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an (1 + \tan^2 x) = 1 + \tan^2 x$ $an $				(3)
$\frac{1 - \tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow$ $e.g., \frac{\tan^2 x + 1}{2\tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2\sin x} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2\cos^2 x \sin x}$ $or \frac{\tan^2 x + 1}{2\tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x}$ $or \frac{\sec^2 x}{2\tan x} \text{ or } \frac{\sec^2 x}{2\cos^2 x \sin x}$ $r \frac{\sec^2 x}{2\tan x} = \frac{\sin x}{\cos x}$ $r \frac{\sec^2 x}{2\tan x} = \frac{\sin^2 x + \cos^2 x}{\cos x}$ $r \frac{\sec^2 x}{2\tan x} = \frac{1}{\sin 2x}$ $r \frac{\cos x}{2\cos^2 x \sin x}$ $r \frac{1}{2\sin x \cos x} = \frac{1}{\sin 2x} = \csc 2x^*$ $r \frac{1}{2\sin x \cos x} = \frac{1}{\sin 2x}$ $r \frac{1}{\sin 2x} = \csc 2x^*$ $r \frac{1}{2\sin x \cos x} = \frac{1}{\cos x \cos x}$ $r \frac{1}{\sin 2x} = \csc 2x^*$ $r \frac{1}{2\sin x \cos x} = \frac{1}{\sin 2x}$ $r \frac{1}{2\sin x \cos x} = \frac{1}{2\sin x \cos x}$ $r \frac{1}{2\sin x \cos x} = \frac{1}{2\sin x \cos x}$ $r \frac{1}{2\sin x \cos x} = \frac{1}{2\sin x \cos x}$	Alt	$\cot 2x \{ +\tan x \} = \frac{1 - \tan^2 x}{2 \tan x} \{ +\tan x \}$	Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$	M1
$25111 \lambda \cos \lambda$ $5111 2\lambda$ mixed or missing engineering on		$\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ e.g., $\frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$	Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \text{ oe}$ to obtain a correct single fraction in sin x and cos x but allow $\frac{\sec^2 x}{2\tan x}$ following use of $\sec^2 x = 1 + \tan^2 x$	A1 (M1 on ePen)
1 1.11		or $\frac{\sec^2 x}{2\tan x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$ $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x} = \csc 2x^*$	A qualifying fraction must be seen before $\frac{1}{2 \sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. sin x^2 for this mark.	A1*

Question Number	Scheme	Notes	Marks
8(b)	Examples:		M1 A1

Page 121 of 123

Question	Scheme	Notes	Marks
Number	Selicitie	Notes	IVIAIKS

Page 122 of 123

Page 123 of 123