Pearson Edexcel IAL (Further) Mathematics

Further Mathematics 1

www.CasperYC.club/wfm01

Past Paper Collection

Last updated: January 21, 2025

Page	Paper Name	Page	Paper Name	Page
1			FP1 2020 10	29
61	FP1 2021 06	93	FP1 2021 10	125
161	FP1 2022 06	197		
233	FP1 2023 06	265		
297	FP1 2024 06	329		
	1 61 161 233	1 61 FP1 2021 06 161 FP1 2022 06 233 FP1 2023 06	1 61 FP1 2021 06 93 161 FP1 2022 06 197 233 FP1 2023 06 265	61 FP1 2021 06 93 FP1 2021 10 161 FP1 2022 06 197 233 FP1 2023 06 265

Please check the examination detail	s below before ent	tering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Tuesday 14 Ja	nuary	2020
Afternoon (Time: 1 hour 30 minute	es) Paper I	Reference WFM01/01
Mathematics International Advanced Further Pure Mathemat		ry/Advanced Level
You must have: Mathematical Formulae and Statis	stical Tables (B	lue), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

$\mathbf{A} = \begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix}$ (a) Determine the values of the constant p for which p	A is singular
(a) Determine the values of the constant p for which p	A is singular. (3)
Given that $p = 3$	
(b) determine A^{-1}	(3)

Question 1 continued	

Leave blank

2.	Given that $x = -\frac{1}{3}$	is a root of the equation
	3	•

$$3x^3 + kx^2 + 33x + 13 = 0 \qquad k \in \mathbb{R}$$

determine

(2)

(b) t	the other 2 roots	of the equation	n in the form $a +$	ib, where	a and b are real	ıl numbers.
-------	-------------------	-----------------	---------------------	-----------	--------------------	-------------

(4)

Question 2 continued		Lea
		_
	(Total 6 marks)	Q2

Leave

3. (a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that for all positive integers n $\sum_{r=1}^{n} r^2 (2n+3) = \frac{n}{r} (n+1)(n^2+3n+1)$		
$\sum_{r=1}^{n} r^2 (2r+3) = \frac{n}{2} (n+1)(n^2+3n+1)$	(4)	
(b) Hence calculate the value of $\sum_{r=10}^{25} r^2 (2r+3)$	(2)	

uestion 3 continued	

Leave blank

4.	$z_1 = p + 5i,$	$z_2 = 9 + 8i$	and	$z_3 = \frac{z_1}{z_2}$
----	-----------------	----------------	-----	-------------------------

where p is a real constant.

(a) Determine z_3 in the form x + iy, where x and y are in terms of p

(3)

(b) Determine the exact value of the modulus of \boldsymbol{z}_2

(1)

Given that the argument of z_1 is $\frac{\pi}{3}$

(c) (i) determine the exact value of p

(ii) determine the exact value of the modulus of z_3

(3)

Question 4 continued	L b
	Q

Leave

	3	1
5.	$f(x) = x^4 - 12x^{\frac{3}{2}} + 7 \qquad x \geqslant 0$	
	(a) Show that the equation $f(x) = 0$ has a root, α , in the interval [2, 3].	
	(2)	
	 (b) Taking 2.5 as a first approximation to α, apply the Newton-Raphson procedure once to f(x) to find a second approximation to α, giving your answer to 2 decimal places. (4) 	
	(c) Show that your answer to (b) gives α correct to 2 decimal places.	
	(2)	

Question 5 continued	L b
	Q

	$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$	
	The transformation represented by A maps the point $R(3p-13, p-4)$, where p constant, onto the point $R'(7, -2)$	is a
	(a) Determine the value of p	(3)
	The point S has coordinates $(0, 7)$	
	Given that O is the origin,	
	(b) determine the area of triangle <i>ORS</i>	(2)
	The transformation represented by A maps the triangle ORS onto the triangle $OR'S'$	
	(c) Hence, using your answer to part (b), determine the area of triangle OR'S'	(2)
_		

Question 6 continued	Leave blank

Question 6 continued	bl
	Q6

Leave blank

- 7. The equation $3x^2 + px 5 = 0$, where p is a constant, has roots α and β .
 - (a) Determine the value of
 - (i) $\alpha\beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

- (b) Obtain an expression, in terms of p, for
 - (i) $\alpha + \beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$$
 (3)

Given that

$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$

(c) determine the value of p.

(1)

(d) Using the value of p found in part (c), obtain a quadratic equation, with integer coefficients, that has roots $\left(\alpha + \frac{1}{\beta}\right)$ and $\left(\beta + \frac{1}{\alpha}\right)$ (2)

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued	b
	Q

8.	A rectangular hyperbola, H , has Cartesian equation $xy = 16$	blank
	The point $P\left(4t, \frac{4}{t}\right)$, $t \neq 0$, lies on H .	
	(a) Use calculus to show that an equation of the normal to H at P is	
	$ty - t^3x = 4 - 4t^4 (5)$	
	The point A on H has parameter $t = 2$	
	The normal to H at A meets H again at the point B .	
	(b) Determine the exact value of the length of AB. (6)	
	The tangent to H at A meets the y -axis at the point C .	
	(c) Determine the exact area of triangle ABC. (3)	

Question 8 continued	Leave blank

Question 8 continued	

Question 8 continued	Leave blank
	Q8
(Total 14 marks)	

9. (:	$f(n) = 7^n (3n+1) - 1$		Leav blan
· (
	Prove by induction that, for $n \in \mathbb{Z}^+$, $f(n)$ is a multiple of 9	(6)	
(:	ii) A sequence of numbers is defined by		
	$u_1 = 2$ $u_2 = 6$		
	$u_{n+2} = 3u_{n+1} - 2u_n \qquad n \in \mathbb{Z}^+$		
	Prove by induction that, for $n \in \mathbb{Z}^+$		
	$u_n = 2(2^n - 1)$	(6)	

Question 9 continued	Leave blank

Question 9 continued	Leave blank

Question 9 continued	Leave blank

		Leave blank
Question 9 continued		
	-	
	-	
	-	
	-	
	-	
	_	
	_	
	-	
	-	
	-	
	_	
	-	
	-	
	-	
	_	
	-	
	-	
	-	
	-	
	_	
	-	
	-	
	-	
	-	
	-	
	-	Q9
	-	
(Total 12 marks TOTAL FOR PAPER: 75 MARKS		J

Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Wednesday 21 (October 2020
Afternoon (Time: 1 hour 30 minutes)	Paper Reference WFM01/01
Mathematics International Advanced Sul Further Pure Mathematics I	,
You must have: Mathematical Formulae and Statistical	Tables (Blue), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

(a) S	$f(x) = x^3 - \frac{10\sqrt{x} - 4x}{x^2} \qquad x > 0$ Show that the equation $f(x) = 0$ has a root α in the interval [1.4, 1.5]	
(u) L		(2)
(b) I	Determine $f'(x)$.	(3)
(c) U	Using $x_0 = 1.4$ as a first approximation to α , apply the Newton-Raphson procedure to $f(x)$ to calculate a second approximation to α , giving your answer to 3 deciplaces.	lure mal
P	oraces.	(2)
		_

Question 1 continued		b
		Q
	(Total 7 marks)	~

Leave	
blank	

2.	The	quadratic	equation	n
≠•	1110	quadratic	cquation	п

$$5x^2 - 2x + 3 = 0$$

has roots α and β .

Without solving the equation,

(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$

(1)

- (b) determine, giving each answer as a simplified fraction, the value of
 - (i) $\alpha^2 + \beta^2$

(ii)
$$\alpha^3 + \beta^3$$

(4)

(c) determine a quadratic equation that has roots

$$(\alpha + \beta^2)$$
 and $(\beta + \alpha^2)$

giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers.

(4)

Question 2 continued	Leav blank

Question 2 continued	Leav blank

Question 2 continued	L b
	(Total 9 marks)

Leave

3.	$f(z) = z^4 + az^3 + bz^2 + cz + d$	bla
	where a , b , c and d are integers.	
	The complex numbers $3 + i$ and $-1 - 2i$ are roots of the equation $f(z) = 0$	
	(a) Write down the other roots of this equation. (2)	
	(b) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram. (2)	
	(c) Determine the values of a, b, c and d. (5)	

Question 3 continued	Leave blank

Question 3 continued	Leave blank

Question 3 continued	L b
	Q

Leave	
blank	

				n		n		
4.	(a)	Use the standard results	for	$\sum_{r=1}^{\infty} r^2$	and	$\sum_{r=1}^{\infty} r$	to show	that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3} n(4n^2 - 1)$$

for all positive integers n.

(5)

(b)	Hence	find	the	exact	value	of	the	sum	of	the	squares	of	the	odd	numbers
	betwee														

(4)

Leave blank	on 4 continued	uestion

Leave blank	on 4 continued	uestion

Question 4 continued	L b
	Q

Leave	
blank	

5. The rectangular hyperbola H has equation xy = 64

The point $P\left(8p, \frac{8}{p}\right)$, where $p \neq 0$, lies on H.

(a) Use calculus to show that the normal to H at P has equation

$$p^3x - py = 8(p^4 - 1)$$
(5)

The normal to H at P meets H again at the point Q.

(b) Determine, in terms of p, the coordinates of Q, giving your answers in simplest form.

Question 5 continued	Leave blank
	_
	_

Question 5 continued	Leave blank
	_
	_

Question 5 continued	b

Leave blank

	(i)	A = 1	1	0)
6.	(1)	$\mathbf{A} = \left($	0	3)

(a) Describe fully the single transformation represented by the matrix ${\bf A}.$

(2)

The matrix **B** represents a rotation of 45° clockwise about the origin.

(b) Write down the matrix \mathbf{B} , giving each element of the matrix in exact form.

(1)

The transformation represented by matrix A followed by the transformation represented by matrix B is represented by the matrix C.

(c) Determine C.

(2)

(ii) The trapezium T has vertices at the points (-2, 0), (-2, k), (5, 8) and (5, 0), where k is a positive constant. Trapezium T is transformed onto the trapezium T' by the matrix

$$\begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$

Given that the area of trapezium T' is 510 square units, calculate the exact value of k. (5)

Question 6 continued	

Leave

7.	The parabola C has equation $y^2 = 4ax$, where a is a positive constant.	
	The line <i>l</i> with equation $3x - 4y + 48 = 0$ is a tangent to <i>C</i> at the point <i>P</i> .	
	(a) Show that $a = 9$ (4)	
	(b) Hence determine the coordinates of P. (2)	
	Given that the point S is the focus of C and that the line I crosses the directrix of C at the point A ,	
	(c) determine the exact area of triangle <i>PSA</i> . (4)	

Question 7 continued	Leave blank

Question 7 continued	Leave blank

	Leave blank
Question 7 continued	Oldin
	Q7
(Total 10 marks)	

Leave	
blank	

8. (i) Prove by induction that, for $n \in$	\mathbb{Z}^{+}
--	------------------

$$\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2(r+1)^2} = \frac{n^2}{(n+1)^2}$$

(6)

	2/ \	n = n-1	
	f(n) = 12	$^{n}+2\times5^{n-1}$	
is divisible by 7			
			(6)

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	Leave blank
	Q8
(Total 12 marks) TOTAL FOR PAPER: 75 MARKS	
END END	

Please check the examination detai	ils below	before ente	ring your can	didate information
Candidate surname			Other name	S
Pearson Edexcel International Advanced Level	Centre	e Number		Candidate Number
Friday 8 Janua	ary	202	21	
Afternoon (Time: 1 hour 30 minutes) Paper Reference WFM01/01				
Mathematics				
International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1				
You must have: Mathematical Formulae and Stati	istical	Γables (Lil	ac), calcula	Total Marks

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

(a)	interval [0.2, 0.6]
	(2)
(b)	Starting with the interval [0.2, 0.6], use interval bisection twice to find an interval of width 0.1 in which α lies.
	(3)

uestion 1 continued	

Leave blank

2.	Given that	$x = \frac{3}{8} + \frac{\sqrt{71}}{8}i$	is a root of the equation
----	------------	--	---------------------------

$$4x^3 - 19x^2 + px + q = 0$$

(a) write down the other complex root of the equation.

(1)

Given that x = 4 is also a root of the equation,

(b) find the value of p and the value of q.

(4)

Question 2 continued	Leave
	Q2
(Total 5 marks)	

Leave	
blank	

3. The matrix M is defined by	blank
$\mathbf{M} = \begin{pmatrix} k+5 & -2 \\ -3 & k \end{pmatrix}$	
(a) Determine the values of k for which M is singular.(2)Given that M is non-singular,	
(b) find \mathbf{M}^{-1} in terms of k . (2)	

Question 3 continued	Leave blank
	Q3
(Total 4 marks)	

Leave	
blank	

4. The equation $2x^2 + 5x + 7 = 0$ has roots α and β		blan
Without solving the equation		
(a) determine the exact value of $\alpha^3 + \beta^3$	(3)	
(b) form a quadratic equation, with integer coefficients, which has roots		
$\frac{lpha^2}{eta}$ and $\frac{eta^2}{lpha}$		
eta α	(5)	
	(5)	

Question 4 continued	Leave blank

Question 4 continued	Leave blank

Question 4 continued	Leave blank
	Q4
(Total 8 marks)	

Leave blank

			n		n
5.	(a)	Using the formulae for	$\sum r$	and	$\sum r^2$, show that
			r=1		r=1

$$\sum_{r=1}^{n} (r+1)(r+5) = \frac{n}{6}(n+7)(2n+7)$$

for all positive integers n.

(5)

(b) Hence show that

$$\sum_{r=n+1}^{2n} (r+1)(r+5) = \frac{7n}{6}(n+1)(an+b)$$

where a and b are integers to be determined.

(2)

Question 5 continued	Leave blank

Question 5 continued	Leave

Question 5 continued	Leave
	_
	_
	-
	-
	-
	-
	_
	_
	-
	-
	-
	_
	-
	_
	_
	-
	-
	-
	_
	-
	-
	_
	-
	-
	-
	Q5
(Total 7 marks)) []

The complex number z is defined by $z = -\lambda + 3i \text{where } \lambda \text{ is a positive real constant}$ Given that the modulus of z is 5 (a) write down the value of λ (b) determine the argument of z , giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$ (3)	$z=-\lambda+3i$ where λ is a positive real constant Given that the modulus of z is 5 (a) write down the value of λ (b) determine the argument of z , giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a+ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$			
Given that the modulus of z is 5 (a) write down the value of λ (b) determine the argument of z , giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers z , z^* , $\frac{z+3i}{2-4i}$ and z^2	Given that the modulus of z is 5 (a) write down the value of λ (b) determine the argument of z , giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers z , z^* , $\frac{z+3i}{2-4i}$ and z^2	The	z complex number z is defined by	
(a) write down the value of λ (1) (b) determine the argument of z , giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers z , z^* , $\frac{z+3i}{2-4i}$ and z^2	 (a) write down the value of λ (b) determine the argument of z, giving your answer in radians to one decimal place. (c) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form a + ib where a and b are real, (i) z+3i/(2-4i) (ii) z² (5) (5) (6) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers z, z*, z+3i/2 at and z² 		$z = -\lambda + 3i$ where λ is a positive real constant	
 (b) determine the argument of z, giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form a + ib where a and b are real, (i) z+3i/(2-4i) (ii) z² (5) (d) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers z, z*, z+3i/2 di and z² 	(1) (b) determine the argument of z, giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (5) (6) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	Giv	Ten that the modulus of z is 5	
 (b) determine the argument of z, giving your answer in radians to one decimal place. (2) In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form a + ib where a and b are real, (i) z + 3i / (2 - 4i) (ii) z² (5) (d) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers z, z*, z + 3i / (2 - 4i) and z² 	In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers z , z^* , $\frac{z+3i}{2-4i}$ and z^2	(a)		
In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	In part (c) you must show detailed reasoning. Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$			(1)
Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	Solutions relying on calculator technology are not acceptable. (c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (d) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(b)		(2)
 (c) Express in the form a + ib where a and b are real, (i) z + 3i / (2 - 4i) (ii) z² (5) (d) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers z, z*, z + 3i / (2 - 4i) and z² 	(c) Express in the form $a + ib$ where a and b are real, (i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (6) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$		In part (c) you must show detailed reasoning.	
(i) $\frac{z+3i}{2-4i}$ (ii) z^2 (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(i) $\frac{z+3i}{2-4i}$ (ii) z^2 (5) (5) Show on a single Argand diagram the points A, B, C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i}$ and z^2		Solutions relying on calculator technology are not acceptable.	
(ii) z^2 (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(ii) z^2 (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(c)	Express in the form $a + ib$ where a and b are real,	
(ii) z^2 (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(ii) z^2 (d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$		(i) $\frac{z+3i}{2-4i}$	
(d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	(d) Show on a single Argand diagram the points A , B , C and D that represent the complex numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$			
numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$			(5)
$z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2 $ (3)	$z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2 $ (3)			
(3)	(3)	(d)		
		(d)	numbers	
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex
		(d)	numbers $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	ex

Question 6 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 6 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Onesting Counting I	Leave blank
Question 6 continued	
	Q6
(Total 11 marks)	

Leave blank

7. The matrix **A** is defined by

$$\mathbf{A} = \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix}$$

The transformation represented by A maps triangle T onto triangle T'

Given that the area of triangle T is 23 cm²

(a) determine the area of triangle T'

(2)

The point P has coordinates (3p + 2, 2p - 1) where p is a constant. The transformation represented by **A** maps P onto the point P' with coordinates (17, -18)

(b) Determine the value of p.

(2)

Given that

$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(c) describe fully the single geometrical transformation represented by matrix $\bf B$ (2)

The transformation represented by matrix A followed by the transformation represented by matrix C is equivalent to the transformation represented by matrix C

/ 1\	D .	
(d)	Determine	C
` /		

(3)

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued	Leave
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q7
(Total 9 mark	

Leave

8.	The hyperbola H has Cartesian equation $xy = 25$	blank
	The parabola P has parametric equations $x = 10t^2$, $y = 20t$	
	The hyperbola H intersects the parabola P at the point A	
	(a) Use algebra to determine the coordinates of A (3)	
	The point B with coordinates $(10,20)$ lies on P	
	(b) Find an equation for the normal to P at B	
	Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be determined. (5)	
	(c) Use algebra to determine, in simplest form, the exact coordinates of the points where this normal intersects the hyperbola <i>H</i>	
	(6)	

Question 8 continued	Leav blank
	_
	_
	_
	_
	_
	_
	_
	_

Question 8 continued	Leav blank
	_
	_
	_
	_
	_
	_
	_

Question 8 continued	Leave
	Q8
(Total 14 marks)	

Leave blank

$$u_{n+1} = \frac{1}{3}(2u_n - 1) \qquad u_1 = 1$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3\left(\frac{2}{3}\right)^n - 1\tag{6}$$

(ii)
$$f(n) = 2^{n+2} + 3^{2n+1}$$

Prove by induction that, I	or $n \in \mathbb{Z}^+$, $f(n)$ is a multiple of /	
		(6)

Question 9 continued	Leave blank

Question 9 continued	bla

Question 9 continued	Leave blank

	Leave blank
Question 9 continued	
	Q9
(Total 12 maulta)	
(Total 12 marks) TOTAL FOR PAPER: 75 MARKS	
FND	

Please check the examination deta	ils below before ento	ering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Time 1 hour 30 minutes	Paper reference	WFM01/01
Mathematics		
International Advance Further Pure Mathema		y/Advanced Level
You must have: Mathematical Formulae and Stat	istical Tables (Ye	ellow), calculator

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 - Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Good luck with your examination

Leave blank

1.	(i)	$f(x) = x^3 + 4x - 6$	b
		(a) Show that the equation $f(x) = 0$ has a root α in the interval [1, 1.5] (2)	
		 (b) Taking 1.5 as a first approximation, apply the Newton Raphson process twice to f(x) to obtain an approximate value of α. Give your answer to 3 decimal places. Show your working clearly. 	
		(4)	
	(ii)	$g(x) = 4x^2 + x - \tan x$	
		where x is measured in radians.	
		The equation $g(x) = 0$ has a single root β in the interval [1.4, 1.5]	
		Use linear interpolation on the values at the end points of this interval to obtain an approximation to β . Give your answer to 3 decimal places.	
		(4)	

Question 1 continued	į t	Leave

	Leave blank
Question 1 continued	

		Leave blank
Question 1 continued		
	-	
	-	
	-	
	•	
		Q1
(Total 10 marks)		
(Total To marks)	'	

Leave blank

2.	The complex	numbers	z_1, z_2	and z_{3}	are given	by
	Time compress	11001110 010	-17 -2	-3	B	~)

$$z_1 = 2 - i$$
 $z_2 = p - i$ $z_3 = p + i$

where p is a real number.

(a) Find $\frac{z_2 z_3}{z_1}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p.

(3)

Given that $\left| \frac{z_2 z_3}{z_1} \right| = 2\sqrt{5}$

(b) find the possible values of p.

(4)

Question 2 continued	Leav. blank

Question 2 continued	Leav. blank

		Leave blank
Question 2 continued		914111
	-	
	-	
		Q2
(Total 7 marks)	,	
(1 300 1 2000 100)	_	

Leave blank

3.	The triangle	T has vertices	A(2,1), B(2)	(3) and $C(0,1)$.
----	--------------	----------------	--------------	--------------------

The triangle T' is the image of T under the transformation represented by the matrix

$$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(a) Find the coordinates of the vertices of T'

(2)

(b) Describe fully the transformation represented by P

(2)

The 2×2 matrix **Q** represents a reflection in the *x*-axis and the 2×2 matrix **R** represents a rotation through 90° anticlockwise about the origin.

(c) Write down the matrix \mathbf{Q} and the matrix \mathbf{R}

(2)

(d) Find the matrix RQ

(2)

(e) Give a full geometrical description of the single transformation represented by the answer to part (d).

(2)

Question 3 continued	Leave blank

Question 3 continued	Leave blank

	Lea blas	ve nk
Question 3 continued		
	Q	3
(Total 10 marks)		

Leave	
blank	

A rectangular hyperbola H has equation xy = 25The point $P\left(5t, \frac{5}{t}\right)$, $t \neq 0$, is a general point on H. (a) Show that the equation of the tangent to H at P is $t^2y + x = 10t$ **(4)** The distinct points Q and R lie on H. The tangent to H at the point Q and the tangent to H at the point R meet at the point (15,-5). (b) Find the coordinates of the points Q and R. **(4)**

Question 4 continued	Leave blank
<u> </u>	

Question 4 continued		Leave blank
	_	

	Leave blank
Question 4 continued	
	Q4
(Total 8 marks)	

Leave

		bla
5.	$f(x) = (9x^2 + d)(x^2 - 8x + (10d + 1))$	
	· · · · · · · · · · · · · · · · · · ·	
	where d is a positive constant.	
	(a) Find the four roots of $f(x)$ giving your answers in terms of d .	
	(3)	
	Given $d = 4$	
	(b) Express these four roots in the form $a + ib$, where $a, b \in \mathbb{R}$.	
	(2)	
	(c) Show these four roots on a single Argand diagram.	
	(2)	

Question 5 continued	Leave blank

Question 5 continued	Leave

	Le bla
Question 5 continued	
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	Q5
(Total 7 marks)	

6.	The parabola C has Cartesian equation $y^2 = 8x$	b
0.		
	The point $P(2p^2, 4p)$ and the point $Q(2q^2, 4q)$, where $p, q \neq 0, p \neq q$, are points on C.	
	(a) Show that an equation of the normal to C at P is	
	$y + px = 2p^3 + 4p$	
	(5)	
	(b) Write down an equation of the normal to C at Q	
	(1)	
	The normal to C at P and the normal to C at Q meet at the point N	
	(c) Show that N has coordinates	
	$(2(p^2 + pq + q^2 + 2), -2pq(p + q))$	
	(5)	
	The line ON , where O is the origin, is perpendicular to the line PQ	
	(d) Find the value of $(p+q)^2 - 3pq$	
	(5)	

Question 6 continued	Leav blan

Question 6 continued	Leav blan

	Leave blank
Question 6 continued	
	Q6
(Total 16 marks)	

Leave blank

7. (a) Prove by induction that for $n \in \mathbb{N}$

$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$$

(5)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + 2) = \frac{n}{6} (an^2 + bn + c)$$

where a, b and c are integers to be found.

(4)

(c) Using your answers to part (b), find the value of

$$\sum_{r=10}^{25} (r^2 + 2)$$

(2)

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued	Leave blank
	Q7
(Total 11 marks)	

	Prove by induction that $4^{n+2} + 5^{2n+1}$ is divisible by 21 for all positive integers n .	(6)

Question 8 continued	blank
(wearing a continuous	

		Leav blar
Question 8 continued		
		00
		Q8
	(Total 6 marks)	
END	TOTAL FOR PAPER: 75 MARKS	

Please check the examination details bel	ow before enter	ring your candidate information
Candidate surname		Other names
Centre Number Candidate No	umber	
Pearson Edexcel Inter	nation	al Advanced Level
Time 1 hour 30 minutes	Paper reference	WFM01/01
Mathematics International Advanced Surther Pure Mathematics	•	y/Advanced Level
You must have: Mathematical Formulae and Statistica	al Tables (Yel	llow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	$\mathbf{A} = \begin{pmatrix} 3 & a \\ -2 & -2 \end{pmatrix}$	Leav blanl
	where a is a non-zero constant and $a \neq 3$	
	(a) Determine A^{-1} giving your answer in terms of a . (2)	
	Given that $\mathbf{A} + \mathbf{A}^{-1} = \mathbf{I}$ where \mathbf{I} is the 2×2 identity matrix,	
	(b) determine the value of a. (3)	

Question 1 continued		Lea blaı
		\1
	(Total 5 marks)	Q1

Leave blank

$f(x) = 7\sqrt{x}$	$-\frac{1}{2}x^3$	$-\frac{5}{3x}$	x > 0
--------------------	-------------------	-----------------	-------

(a) Show that the equation f(x) = 0 has a root, α , in the interval [2.8, 2.9]

(2)

- (b) (i) Find f'(x).
 - (ii) Hence, using $x_0 = 2.8$ as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to calculate a second approximation to α , giving your answer to 3 decimal places.

(4)

(c) Use linear interpolation once on the interval [2.8, 2.9] to find another approximation to α . Give your answer to 3 decimal places.

(3)

Question 2 continued	Leave blank
	-
	-

Question 2 continued	Leave blank
	-
	-

Question 2 continued	
	(Total 9 marks)

Leave blank

3.	The	quadratic	equation
----	-----	-----------	----------

$$2x^2 - 5x + 7 = 0$$

has roots α and β

Without solving the equation,

(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$

(1)

- (b) determine, giving each answer as a simplified fraction, the value of
 - (i) $\alpha^2 + \beta^2$

(ii)
$$\alpha^3 + \beta^3$$

(4)

(c) find a quadratic equation that has roots

$$\frac{1}{\alpha^2 + \beta}$$
 and $\frac{1}{\beta^2 + \alpha}$

giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.

(4)

Question 3 continued	Leave
Question 5 continued	

Question 3 continued	Leave blank

Question 3 continued	

Leave blank

4.	$f(z) = 2z^3 - z^2 + az + b$	blank
	where a and b are integers.	
	The complex number $-1 - 3i$ is a root of the equation $f(z) = 0$	
	(a) Write down another complex root of this equation.	
	(1)	
	(b) Determine the value of a and the value of b . (4))
	(c) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram.	
	(2))

Question 4 continued	Leave blank

Question 4 continued	Leave blank

Question 4 continued	Leave blank
	_
	Q4
(Total 7 mar	'KS)

(3)

Leave blank

			n	n		n					
5.	(a)	Use the standard results for	$\sum r^3$,	$\sum r^2$	and	$\sum r$	to show	that	for a	ıll p	ositive
		• .	r=1	r=1		r=1					
		integers <i>n</i> ,									

$$\sum_{r=1}^{n} r(r-1)(r-3) = \frac{1}{12} n(n+1)(n-1)(3n-10)$$
(5)

(b) Hence show that

$$\sum_{r=n+1}^{2n+1} r(r-1)(r-3) = \frac{1}{12} n(n+1)(an^2 + bn + c)$$

where a, b and c are integers to be determined.

Question 5 continued	Leave blank

Question 5 continued	Leave blank

Question 5 continued		Lea blar
		Q5
	(Total 8 marks)	

Leave

ĺ.	The curve H has equation
	$xy = a^2$ $x > 0$
	where a is a positive constant.
	The line with equation $y = kx$, where k is a positive constant, intersects H at the point P
	(a) Use calculus to determine, in terms of a and k , an equation for the tangent to H at P (4)
	The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B
	(b) Determine the coordinates of A and the coordinates of B , giving your answers in terms of a and k
	(2)
	(c) Hence show that the area of triangle AOB , where O is the origin, is independent of k (2)
_	
_	

Question 6 continued	Leave blank

Question 6 continued	Leave blank

Question 6 continued	Lea

Leave blank

_	T (*)	41	1 4	e i				1 .			c
7.	In part (i),	the	elements of	t each	matrix	should b	e expresse	d in	exact	numerical	torm.

(i) (a) Write down the 2×2 matrix that represents a rotation of 210° anticlockwise about the origin.

(1)

(b) Write down the 2×2 matrix that represents a stretch parallel to the y-axis with scale factor 5

(1)

The transformation T is a rotation of 210° anticlockwise about the origin followed by a stretch parallel to the y-axis with scale factor 5

(c) Determine the 2×2 matrix that represents T

(2)

(ii)

$$\mathbf{M} = \begin{pmatrix} k & k+3 \\ -5 & 1-k \end{pmatrix} \quad \text{where } k \text{ is a constant}$$

(a) Find det M, giving your answer in simplest form in terms of k.

(2)

A closed shape R is transformed to a closed shape R' by the transformation represented by the matrix M.

Given that the area of R is 2 square units and that the area of R' is 16k square units,

(b) determine the possible values of k.

(3)

Question 7 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 7 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 7 continued	Lea bla
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_ Q7
(Total 9 marks	

		Leave
8.	The parabola C has equation $y^2 = 20x$	blank
	The point P on C has coordinates $(5p^2, 10p)$ where p is a non-zero constant.	
	(a) Use calculus to show that the tangent to C at P has equation	
	$py - x = 5p^2 \tag{3}$	
	The tangent to C at P meets the y -axis at the point A .	
	(b) Write down the coordinates of A. (1)	
	The point S is the focus of C .	
	(c) Write down the coordinates of S. (1)	
	The straight line l_1 passes through A and S .	
	The straight line l_2 passes through O and P , where O is the origin.	
	Given that l_1 and l_2 intersect at the point B ,	
	(d) show that the coordinates of B satisfy the equation	
	$2x^2 + y^2 = 10x (5)$	

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	Leave
	Q8
(Total 10 marks)	

		bla
9. (i) A sequence of numbers is defined by		
$u_1 = 0$ $u_2 = -6$		
$u_{n+2} = 5u_{n+1} - 6u_n n \geqslant 1$		
Prove by induction that, for $n \in \mathbb{Z}^+$		
$u_n = 3 \times 2^n - 2 \times 3^n$	(5)	
(ii) Prove by induction that, for all positive integers n ,		
$f(n) = 3^{3n-2} + 2^{4n-1}$		
is divisible by 11		
	(5)	

Question 9 continued	Leave
Question 7 continued	
	1

Question 9 continued	Leave blank

Question 9 continued	Leave blank
	_
	-
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_
	_
	-
	-
	-
	_
	_

Question 9 continued		Leave blank
		Q9
END	(Total 10 marks) OTAL FOR PAPER: 75 MARKS	

Please check the examination details bel	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate N	umber
Pearson Edexcel Inter	national Advanced Level
Time 1 hour 30 minutes	Paper reference WFM01/01
Mathematics	
International Advanced Su	•
Further Pure Mathematics	5 F 1
You must have: Mathematical Formulae and Statistica	al Tables (Yellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

Find the range of valu	$\mathbf{M} = \begin{pmatrix} 3x & 7 \\ 4x + 1 & 2 - x \end{pmatrix}$ the sof x for which the determinant of the matrix \mathbf{M}	is nositive
Tind the range of valu	ies of a for which the determinant of the matrix ivi	(5)

Question 1 continued		Lea blaı
		\1
	(Total 5 marks)	Q1

Leave blank

2	The compl	ex numbers z	and z	are	given	hx
∠.	The compr	CA Hulliocis 2	a_1 and Δ_2	arc	grvcn	Uy

$$z_1 = 3 + 5i$$
 and $z_2 = -2 + 6i$

(a) Show z_1 and z_2 on a single Argand diagram.

(2)

- (b) Without using your calculator and showing all stages of your working,
 - (i) determine the value of $|z_1|$

(1)

(ii) express $\frac{z_1}{z_2}$ in the form a+bi, where a and b are fully simplified fractions.

(3)

(c) Hence determine the value of $\arg \frac{z_1}{z_2}$

Give your answer in radians to 2 decimal places.

(2)

Question 2 continued	Leave blank
	-
	-

Question 2 continued	Leave blank
	-
	-

Question 2 continued	1	Lea blar
	Q	2

Leave

3.	The parabola C has equation $y^2 = 18x$		blan
	The point S is the focus of C		
	(a) Write down the coordinates of S	(1)	
	The point P , with $y > 0$, lies on C		
	The shortest distance from P to the directrix of C is 9 units.		
	(b) Determine the exact perimeter of the triangle <i>OPS</i> , where <i>O</i> is the origin.		
	Give your answer in simplest form.	(4)	

Question 3 continued	Leave blank

Question 3 continued	Leave blank

Question 3 continued	Le
	Q3
	(Total 5 marks)

Leave blank

4. The equation

$$x^4 + Ax^3 + Bx^2 + Cx + 225 = 0$$

where A, B and C are real constants, has

- a complex root 4 + 3i
- a repeated positive real root
- (a) Write down the other complex root of this equation.

(1)

(b) Hence determine a quadratic factor of $x^4 + Ax^3 + Bx^2 + Cx + 225$

(2)

(c) Deduce the real root of the equation.

(2)

(d) Hence determine the value of each of the constants A, B and C

(3)

Question 4 continued	Leave blank

Question 4 continued	Leave blank

Question 4 continued	

Leave blank

5.
$$\mathbf{P} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

The matrix $\bf P$ represents the transformation U

(a) Give a full description of U as a single geometrical transformation.

(2)

The transformation V, represented by the 2×2 matrix Q, is a reflection in the line y = -x

(b) Write down the matrix Q

(1)

The transformation U followed by the transformation V is represented by the matrix \mathbf{R}

(c) Determine the matrix **R**

(2)

The transformation W is represented by the matrix $3\mathbf{R}$

The transformation W maps a triangle T to a triangle T'

The transformation W' maps the triangle T' back to the original triangle T

(d) Determine the matrix that represents W'

(3)

Question 5 continued	Leave blank

Question 5 continued	Leave blank

Question 5 continued		Lea blar
		Q5
	(Total 8 marks)	

6.	The	quadratic	equation
----	-----	-----------	----------

$$Ax^2 + 5x - 12 = 0$$

where A is a constant, has roots α and β

- (a) Write down an expression in terms of A for
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$

(2)

The equation

$$4x^2 - 5x + B = 0$$

where *B* is a constant, has roots $\alpha - \frac{3}{\beta}$ and $\beta - \frac{3}{\alpha}$

(b) Determine the value of A

(3)

(c) Determine the value of B

(3)

Question 6 continued	Leave blank

Question 6 continued	Leave blank

Question 6 continued	Lea

Solutions relying entirely on calculator technology are not accelerate The rectangular hyperbola H has equation $xy = 36$ The point $P(4, 9)$ lies on H	ptable.
The point $P(4, 9)$ lies on H	
(a) Show, using calculus, that the normal to H at P has equation	
4x - 9y + 65 = 0	(4)
The normal to H at P crosses H again at the point Q	
(b) Determine an equation for the tangent to H at Q , giving your an $y = mx + c$ where m and c are rational constants.	
	(5)

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued	

8.
$$f(x) = 2x^{-\frac{2}{3}} + \frac{1}{2}x - \frac{1}{3x - 5} - \frac{5}{2} \qquad x \neq \frac{5}{3}$$

The table below shows values of f(x) for some values of x, with values of f(x) given to 4 decimal places where appropriate.

x	1	2	3	4	5
f(x)	0.5		-0.2885		0.5834

(a)	Complete	the table	giving	the values	to 4	decimal	places
-----	----------	-----------	--------	------------	------	---------	--------

(2)

The equation f(x) = 0 has exactly one positive root, α .

Using the values in the completed table and explaining your reasoning,

(b) determine an interval of width one that contains α .

(2)

(c) Hence use interval bisection twice to obtain an interval of width 0.25 that contains α .

Given also that the equation f(x) = 0 has a negative root, β , in the interval [-1, -0.5]

(d) use linear interpolation once on this interval to find an approximation for β .

Give your answer to 3 significant figures.

(3)

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	ł t

9. (a) Prove by induction that, for $n \in \mathbb{N}$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2 \tag{5}$$

(b) Using the standard summation formulae, show that

$$\sum_{r=1}^{n} r(r+1)(r-1) = \frac{1}{4} n(n+A)(n+B)(n+C)$$

where A, B and C are constants to be determined.

(4)

(c) Determine the value of n for which

$$3\sum_{r=1}^{n}r(r+1)(r-1)=17\sum_{r=n}^{2n}r^{2}$$
(5)

Question 9 continued	Leave blank
	_
	-
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_
	_
	-
	-
	-
	_
	_

Question 9 continued	Leave blank
	_
	-
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_
	_
	-
	-
	-
	_
	_

Question 9 continued	Leave blank
	_
	-
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_
	_
	-
	-
	-
	_
	_

	Question 9 continued	Leav
		Q
(Total 14 marks) TOTAL FOR PAPER: 75 MARKS	(Total 14 marks)	

Please check the examination details bel	ow before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate Number Pearson Edexcel Inter		al Advanced Level
Time 1 hour 30 minutes	Paper reference	WFM01/01
Mathematics		
International Advanced Su Further Pure Mathematics	•	y/Advanced Level
You must have: Mathematical Formulae and Statistica	al Tables (Ye	ellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
- Answers without working may not gain full credit.

 Inexact answers should be given to three significant figures unless
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. $z_1 = 3 + 3i$ $z_2 = p + qi$ $p, q \in \mathbb{R}$	
Given that $ z_1 z_2 = 15\sqrt{2}$	
(a) determine $ z_2 $	2)
Given also that $p = -4$	
(b) determine the possible values of q	2)
(c) Show z_1 and the possible positions for z_2 on the same Argand diagram.	2)

Question 1 continued

Question 1 continued

Question 1 continued		
(Total for Question 1 is 6 marks)		

2.	$f(x) = 10 - 2x - \frac{1}{2\sqrt{x}} - \frac{1}{x^3} \qquad x > 0$	
	(a) Show that the equation $f(x) = 0$ has a root α in the interval [0.4, 0.5]	(2)
	(b) Determine $f'(x)$.	(3)
	(c) Using $x_0 = 0.5$ as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α , giving your answer to 3 decimal places.	(2)
	The equation $f(x) = 0$ has another root β in the interval [4.8, 4.9]	(-)
	(d) Use linear interpolation once on the interval [4.8, 4.9] to find an approximation to β , giving your answer to 3 decimal places.	(2)

Question 2 continued		

Question 2 continued		

Question 2 continued		
(Total for Question 2 is 9 marks)		

3.	$\mathbf{M} = \begin{pmatrix} k & k \\ 3 & 5 \end{pmatrix} \qquad \text{where } k \text{ is a non-zero constant}$	
	(a) Determine \mathbf{M}^{-1} , giving your answer in simplest form in terms of k . Hence, given that $\mathbf{N}^{-1} = \begin{pmatrix} k & k \\ 4 & -1 \end{pmatrix}$	(2)
	(b) determine $(MN)^{-1}$, giving your answer in simplest form in terms of k .	(2)

Question 3 continued		
(Total for Question 3 is 4 marks)		

4.	$f(z) = 2z^4 - 19z^3 + Az^2 + Bz - 156$	
	where A and B are constants.	
	The complex number $5 - i$ is a root of the equation $f(z) = 0$	
	(a) Write down another complex root of this equation.	
		(1)
	b) Solve the equation $f(z) = 0$ completely.	(5)
	(c) Determine the value of A and the value of B.	(3)
	c) Determine the value of A and the value of B.	(2)

Question 4 continued		
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	_	
	-	
	-	
	-	
	-	

Question 4 continued		

Question 4 continued		
(Total for Question 4 is 8 marks)		

5.	The quadratic equation	
	$2x^2 - 3x + 5 = 0$	
	has roots α and β	
	Without solving the equation,	
	(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$	(1)
	(b) determine the value of	(1)
	(i) $\alpha^2 + \beta^2$	
	(ii) $\alpha^3 + \beta^3$	
	(ii) $\alpha + \beta$	(4)
	(c) find a quadratic equation which has roots	
	$(\alpha^3 - \beta)$ and $(\beta^3 - \alpha)$	
	giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be	
	determined.	(5)

Question 5 continued

Question 5 continued

Question 5 continued
(Total for Question 5 is 10 marks)
(Total for Question 3 is to marks)

6	The parabola C has equation $y^2 = 36x$	
U.		
	The point $P(9t^2, 18t)$, where $t \neq 0$, lies on C	
	(a) Use calculus to show that the normal to C at P has equation	
	$y + tx = 9t^3 + 18t$	
		(4)
	(b) Hence find the equations of the two normals to C which pass through the point (54, 0), giving your answers in the form $y = px + q$ where p and q are constants to be determined.	
		(4)
	Given that	
	• the normals found in part (b) intersect the directrix of C at the points A and B	
	• the point F is the focus of C	
	(c) determine the area of triangle <i>AFB</i>	
		(3)

Question 6 continued		

Question 6 continued		

Question 6 continued		
(Total for Question 6 is 11 marks)		

7.

$$\mathbf{A} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$$

(a) Determine the matrix A^2

(1)

(b) Describe fully the single geometrical transformation represented by the matrix A^2

(2)

(c) Hence determine the smallest positive integer value of n for which $A^n = I$

(1)

The matrix **B** represents a stretch scale factor 4 parallel to the x-axis.

(d) Write down the matrix **B**

(1)

The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf B$ is represented by the matrix $\bf C$

(e) Determine the matrix C

(2)

The parallelogram P is transformed onto the parallelogram P' by the matrix \mathbb{C}

(f) Given that the area of parallelogram P' is 20 square units, determine the area of parallelogram P

(2)

Question 7 continued		

Question 7 continued		

Question 7 continued		
(Total for Question 7 is 9 marks)		

8.	(a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that for all positive integers n	
	$\sum_{r=0}^{n} (r+1)(r+2) = \frac{1}{3}(n+1)(n+2)(n+3)$	(5)
	(b) Hence determine the value of	
	$10 \times 11 + 11 \times 12 + 12 \times 13 + + 100 \times 101$	(3)

Question 8 continued		

Question 8 continued		

Question 8 continued		
(Total for Question 8 is 8 marks)		

9.	(i) A sequence of numbers is defined by	
	$u_1 = 3$	
	$u_{n+1} = 2u_n - 2^{n+1}$ $n \geqslant 1$	
	Prove by induction that, for $n \in \mathbb{N}$	
	$u_n = 5 \times 2^{n-1} - n \times 2^n$	
	(ii) Prove by induction that, for $n \in \mathbb{N}$	(5)
	$f(n) = 5^{n+2} - 4n - 9$	
	is divisible by 16	
		(5)

Question 9 continued

Question 9 continued

Question 9 continued

Question 9 continued
(Total for Question 9 is 10 marks)
(10tal for Question 9 is 10 marks)
TOTAL FOR PAPER: 75 MARKS END

Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Centre Number Candidate Nu	umber		
Pearson Edexcel International Advanced Level			
Time 1 hour 30 minutes	Paper reference	WFM	01/01
Mathematics International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistics	Tables (Yello	ow), calculator	Total Marks

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	Given	that

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ -2 & 3 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & k \\ 0 & -3 \\ 2k & 2 \end{pmatrix}$$

where k is a non-zero constant,

(a) determine the matrix AB

(2)

(b) determine the value of k for which $det(\mathbf{AB}) = 0$

(3)

Question 1 continued
(Total for Question 1 is 5 marks)

2.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that for all positive integers n	
	$\sum_{r=1}^{n} (7r-5)^{2} = \frac{n}{6} (7n+1) (An+B)$	
	where A and B are integers to be determined.	(6)

Question 2 continued
(Total for Question 2 is 6 marks)

3.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	$f(z) = 4z^3 + pz^2 - 24z + 108$	
	where p is a constant.	
	Given that -3 is a root of the equation $f(z) = 0$	
	(a) determine the value of p	(0)
		(2)
	(b) using algebra, solve $f(z) = 0$ completely, giving the roots in simplest form,	(4)
	(c) determine the modulus of the complex roots of $f(z) = 0$	(2)
	(d) show the meets of f(-) O on a single Amound discusses	(2)
	(d) show the roots of $f(z) = 0$ on a single Argand diagram.	(2)

Question 3 continued
Question & continued

Question 3 continued		

Question 3 continued		
(Total for	r Question 3 is 10 marks)	

1	
4	•

$$f(x) = 1 - \frac{1}{8x^4} + \frac{2}{7\sqrt{x^7}} \qquad x > 0$$

The equation f(x) = 0 has a single root, α , that lies in the interval [0.15, 0.25]

- (a) (i) Determine f'(x)
 - (ii) Explain why 0.25 cannot be used as an initial approximation for α in the Newton-Raphson process.
 - (iii) Taking 0.15 as a first approximation to α apply the Newton-Raphson process once to f(x) to obtain a second approximation to α Give your answer to 3 decimal places.

(5)

(b) Use linear interpolation once on the interval [0.15, 0.25] to find another approximation to α Give your answer to 3 decimal places.

(3)

Question 4 continued		

Question 4 continued		

Question 4 continued		
(Total for Question 4 is 8 marks)		
(Total for Question 1 is 6 marks)		

		The quadratic equation	5.
		$4x^2 + 3x + k = 0$	
		where k is an integer, has roots α and β	
	(2)	(a) Write down, in terms of k where appropriate, the value of $\alpha + \beta$ and the value of $\alpha\beta$	
	(2)	(b) Determine in simplest form in terms of k the value of $\frac{\alpha}{\lambda} + \frac{\beta}{\lambda}$	
	(4)	(b) Determine, in simplest form in terms of k , the value of $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$	
		(c) Determine a quadratic equation which has roots	
		$\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$	
		giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integer values in terms of k	
	(3)	values in terms of k	
•			

Question 5 continued

Question 5 continued		

Question 5 continued		
(Total for Question 5 is 9 marks)		

6.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The rectangular hyperbola H has equation $xy = 20$	
	The point $P\left(2t\sqrt{a}, \frac{2\sqrt{a}}{t}\right)$, $t \neq 0$, where a is a constant, is a general point on H	
	(a) State the value of a	(1)
	(b) Show that the normal to H at the point P has equation	
	$ty - t^3x - 2\sqrt{5}\left(1 - t^4\right) = 0$	(4)
	The points A and B lie on H	
	The point A has parameter $t = c$ and the point B has parameter $t = -\frac{1}{2c}$, where c is a constant.	
	The normal to H at A meets H again at B	
	(c) Determine the possible values of c	(4)

Question 6 continued
Question o continued

Question 6 continued
Question v continued

Question 6 continued
(Total for Question 6 is 9 marks)
(======================================

_	
7	(1)
/ •	(1)
	(-/

$$\mathbf{P} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

The matrix \mathbf{P} represents a geometrical transformation U

(a) Describe U fully as a single geometrical transformation.

(2)

The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a rotation through 240° anticlockwise about the origin followed by an enlargement about (0, 0) with scale factor 6

(b) Determine the matrix \mathbf{Q} , giving each entry in exact numerical form.

(2)

Given that U followed by V is the transformation T, which is represented by the matrix \mathbf{R}

(c) determine the matrix **R**

(2)

(ii) The transformation W is represented by the matrix

$$\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix}$$

Show that there is a real number λ for which W maps the point $(\lambda, 1)$ onto the point $(4\lambda, 4)$, giving the exact value of λ

(5)

Question 7 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 7 continued

Question 7 continued
(Total for Question 7 is 11 marks)

8.	A parabola C has equation $y^2 = 4ax$ where a is a positive constant.	
	The point S is the focus of C	
	The line l_1 with equation $y = k$ where k is a positive constant, intersects C at the point P	
	(a) Show that	
	$PS = \frac{k^2 + 4a^2}{4a}$	(3)
	The line l_2 passes through P and intersects the directrix of C on the x -axis.	
	The line l_2 intersects the y-axis at the point A	
	(b) Show that the y coordinate of A is $\frac{4a^2k}{k^2 + 4a^2}$	(3)
	The line l_1 intersects the directrix of C at the point B	
	Given that the areas of triangles BPA and OSP, where O is the origin, satisfy the ratio	
	area BPA : area $OSP = 4k^2$: 1	
	(c) determine the exact value of a	(5)

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Question 8 is 11 marks)

9. Prov	• Prove by induction that for all positive integers <i>n</i>		
		$\sum_{r=1}^{n} \log \left(2r-1\right) = \log \left(\frac{(2n)!}{2^{n} n!}\right)$	(6)

Question 9 continued

Question 9 continued	
	_
	_
(Total for Question 9 is 6 marks)	_
TOTAL FOR PAPER IS 75 MARKS	

Please check the examination details below	w before entering your candidate information
Candidate surname	Other names
Pearson Edexcel Interr	national Advanced Level
Tuesday 30 May 202	.3
Afternoon (Time: 1 hour 30 minutes)	Paper reference WFM01/01
Mathematics	
International Advanced Su Further Pure Mathematics	•
You must have: Mathematical Formulae and Statistical	Tables (Yellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	Use the standard results for	$\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n	
		$\sum_{r=1}^{n} r^{2} (r+2) = \frac{1}{12} n(n+1)(an^{2} + bn + c)$	
	where a , b and c are integer	rs to be determined.	(4)

Question 1 continued
(Total for Question 1 is 4 marks)

2.	In this question you must show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	Given that $x = 2 + 3i$ is a root of the equation	
	$2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0$	
	(a) write down another complex root of this equation.	(1)
	(b) Use algebra to determine the other 2 roots of the equation.	(4)
	(c) Show all 4 roots on a single Argand diagram.	(2)

Question 2 continued

Question 2 continued

Question 2 continued	
	(Total for Question 2 is 7 marks)

3.	The rectangular hyperbola H has Cartesian equation $xy = 9$	
	The point P with coordinates $\left(3t, \frac{3}{t}\right)$, where $t \neq 0$, lies on H	
	(a) Use calculus to determine an equation for the normal to H at the point P	
	Give your answer in the form $ty - t^3x = f(t)$	
		(4)
	Given that $t = 2$	
	(b) determine the coordinates of the point where the normal meets H again.	
	Give your answer in simplest form.	(3)

Question 3 continued	
	(Total for Question 3 is 7 marks)

4.	(i)	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \text{where } k \text{ is a constant}$
		The transformation represented by A transforms triangle T to triangle T'
		The area of triangle T' is three times the area of triangle T
		Determine the possible values of k
		(4)
	(ii)	$\mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \text{ and } \mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} \text{ where } a \text{ is a constant}$
		Determine, in terms of a , the matrix \mathbf{C}
		(4)

Question 4 continued

Question 4 continued

Question 4 continued
(Total for Question 4 is 8 marks)
(Total for Question 4 is 6 marks)

5.	$f(x) = x^2 - 6x + 3$	
	The equation $f(x) = 0$ has roots α and β	
	Without solving the equation,	
	(a) determine the value of	
	$(\alpha^2+1)(\beta^2+1)$	(4)
	(b) find a quadratic equation which has roots	
	$\frac{\alpha}{(\alpha^2+1)}$ and $\frac{\beta}{(\beta^2+1)}$	
	giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
		(6)

Question 5 continued

Question 5 continued

Question 5 continued
(Total for Question 5 is 10 marks)

6.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	$z_1 = 3 + 2i$ $z_2 = 2 + 3i$ $z_3 = a + bi$ $a,b \in \mathbb{R}$	
	(a) Determine the exact value of $ z_1 + z_2 $	(2)
	Given that $w = \frac{z_2 z_3}{z_1}$	
	(b) determine w in terms of a and b , giving your answer in the form $x + iy$, where $x, y \in \mathbb{R}$	(4)
	Given also that $w = \frac{4}{13} + \frac{58}{13}i$	(4)
	(c) determine the value of a and the value of b	(2)
	(d) determine arg w, giving your answer in radians to 4 significant figures.	(2)

Question 6 continued

Question 6 continued

Question 6 continued
(Total for Question 6 is 10 marks)

	<u>3</u>	
7.	$f(x) = x^{\frac{3}{2}} + x - 3$	
	(a) Show that the equation $f(x) = 0$ has a root, α , in the interval [1, 2]	
		(2)
	(b) Starting with the interval [1, 2], use interval bisection twice to show that α lies in the	
	interval [1.25, 1.5]	(3)
	(c) (i) Determine $f'(x)$	
	(ii) Using 1.375 as a first approximation for α , apply the Newton-Raphson process once to $f(x)$ to determine a second approximation for α , giving your answer to 3 decimal places.	
	•	(3)
	(d) Use linear interpolation once on the interval [1.25, 1.5] to obtain a different	
	approximation for α , giving your answer to 3 decimal places.	(3)
		(3)

Question 7 continued

Question 7 continued

Question 7 continued	
	(Total for Question 7 is 11 marks)

8.	The point $P(2p^2, 4p)$ lies on the parabola with equation $y^2 = 8x$	
	(a) Show that the point $Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$, where $p \neq 0$, lies on the parabola.	
		(1)
	(b) Show that the chord PQ passes through the focus of the parabola.	(4)
	The tangent to the parabola at P and the tangent to the parabola at Q meet at the point R (c) Determine, in simplest form, the coordinates of R	(0)
		(8)
_		

Question 8 continued

Question 8 continued

Question 8 continued
(Total for Question 8 is 13 marks)

9.	Prove, by induction, that for $n \in \mathbb{Z}$, $n \ge 2$	
	$4^n + 6n - 10$	
	is divisible by 18	(5)

Question 9 continued

Question 9 continued
(Total for Question 9 is 5 marks)
TOTAL FOR PAPER IS 75 MARKS

Please check the examination details below before entering your candidate information	
Candidate surname	Other names
Centre Number Candidate Number Pearson Edexcel Internation	al Advanced Level
Friday 12 January 2024	
Morning (Time: 1 hour 30 minutes) Paper reference	WFM01/01
Mathematics	
International Advanced Subsidiary Further Pure Mathematics F1	y/ Advanced Level
You must have: Mathematical Formulae and Statistical Tables (Yel	low), calculator

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. $\mathbf{M} = \begin{pmatrix} 2k+1 & k \\ k+7 & k+4 \end{pmatrix} \text{ where } k \text{ is a constant}$	
(a) Show that \mathbf{M} is non-singular for all real values of k .	(3)
(b) Determine \mathbf{M}^{-1} in terms of k .	(2)

Question 1 continued
(Total for Question 1 is 5 marks)

2.		
	$f(z) = 2z^3 + pz^2 + qz - 41$	
	where p and q are integers.	
	The complex number $5-4i$ is a root of the equation $f(z) = 0$	
	(a) Write down another complex root of this equation.	(1)
	(b) Solve the equation $f(z) = 0$ completely.	(1)
	(b) Borve the equation 1(2) — 6 completely.	(4)
	(c) Determine the value of p and the value of q .	(2)
	When plotted on an Argand diagram, the points representing the roots of the equation $f(z) = 0$ form the vertices of a triangle.	(2)
	(d) Determine the area of this triangle.	(2)
		(2)

Question 2 continued

Question 2 continued

Question 2 continued
(Total for Question 2 is 9 marks)

3.	The hyperbola <i>H</i> has equation $xy = c^2$ where <i>c</i> is a positive constant.	
	The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H .	
	The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B .	
	(a) Determine, in terms of c and t ,	
	(i) the coordinates of A ,	
	(ii) the coordinates of B .	(4)
	Given that the area of triangle AOB , where O is the origin, is 90 square units,	
	(b) determine the value of c , giving your answer as a simplified surd.	(2)

Question 3 continued
(Total for Question 3 is 6 marks)

4.	$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	
	(a) Describe the single geometrical transformation represented by the matrix A.	(2)
	The matrix B represents a rotation of 210° anticlockwise about centre (0, 0).	
	(b) Write down the matrix B , giving each element in exact form.	(1)
	The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf B$ is represented by the matrix $\bf C$.	
	(c) Find C.	(2)
	The hexagon H is transformed onto the hexagon H' by the matrix \mathbb{C} .	
	(d) Given that the area of hexagon H is 5 square units, determine the area of hexagon H'	(2)

Question 4 continued
(Total for Question 4 is 7 marks)

5.	The quadratic equation	
	$2x^2 - 3x + 7 = 0$	
	has roots α and β	
	Without solving the equation,	
	(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$	(1)
	(b) determine the value of $\alpha^2 + \beta^2$	(2)
	(c) find a quadratic equation which has roots	
	$\left(\alpha - \frac{1}{\beta^2}\right)$ and $\left(\beta - \frac{1}{\alpha^2}\right)$	
	giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
		(6)

Question 5 continued

Question 5 continued

Question 5 continued
(Total for Question 5 is 9 marks)

(2)

(2)

6.	(i)	(i)	
	(-)	$f(x) = x - 4 - \cos(5\sqrt{x})$	<i>x</i> > 0
	(a)	Show that the equation $f(x) = 0$ has a root α in the i	nterval [

- (a) Show that the equation f(x) = 0 has a root α in the interval [2.5, 3.5]
- (b) Use linear interpolation once on the interval [2.5, 3.5] to find an approximation to α , giving your answer to 2 decimal places.

(ii) $g(x) = \frac{1}{10}x^2 - \frac{1}{2x^2} + x - 11 \qquad x > 0$

(a) Determine g'(x). (2)

The equation g(x) = 0 has a root β in the interval [6, 7]

(b) Using $x_0 = 6$ as a first approximation to β , apply the Newton-Raphson procedure once to g(x) to find a second approximation to β , giving your answer to 3 decimal places.

Question 6 continued

Question 6 continued

Question 6 continued		
(Total for Question 6 is 8 marks)		

7.	The parabola C has equation $y^2 = \frac{4}{3}x$	
	The point $P\left(\frac{1}{3}t^2, \frac{2}{3}t\right)$, where $t \neq 0$, lies on C .	
	(a) Use calculus to show that the normal to C at P has equation	
	$3tx + 3y = t^3 + 2t$	(3)
	The normal to C at the point where $t = 9$ meets C again at the point Q .	
	(b) Determine the exact coordinates of Q .	(4)

Question 7 continued
(Total for Question 7 is 7 marks)

8.	(a) Use the standard results for summations to show that, for all positive integers n ,	
	$\sum_{r=1}^{n} r(2r^2 - 3r - 1) = \frac{1}{2}n(n+1)^2(n-2)$	(4)
	(b) Hence show that, for all positive integers n ,	
	$\sum_{r=n}^{2n} r(2r^2 - 3r - 1) = \frac{1}{2}n(n-1)(an+b)(cn+d)$	
	where a , b , c and d are integers to be determined.	(4)

Question 8 continued

Question 8 continued

Question 8 continued
(Total for Question 8 is 8 marks)

9.	Given that	
	$\frac{3z-1}{2} = \frac{\lambda + 5i}{\lambda - 4i}$	
	where λ is a real constant,	
	(a) determine z, giving your answer in the form $x + yi$, where x and y are real and in	
	terms of λ .	(4)
	Given also that $\arg z = \frac{\pi}{4}$	
	(b) find the possible values of λ .	(2)

Question 9 continued		
Question > continued		
	(Total for Question 9 is 6 marks)	

10. (i) Prove by induction that for $n \in \mathbb{Z}^+$ $\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^n = 3^{n-1} \begin{pmatrix} 2n+3 & -n \\ 4n & 3-2n \end{pmatrix}$	(5)
(ii) Prove by induction that for $n \in \mathbb{Z}^+$	
$f(n) = 8^{2n+1} + 6^{2n-1}$	
is divisible by 7	(5)

Question 10 continued

Question 10 continued

Question 10 continued

Question 10 continued
(Total for Question 10 is 10 marks)
TOTAL FOR PAPER IS 75 MARKS

Please check the examination details below be	fore entering your candidate information
Candidate surname	Other names
Centre Number Candidate Number	
Pearson Edexcel Interna	tional Advanced Level
Thursday 23 May 2024	L
Morning Clime, Luour 20 minutes) - 1	per WFM01/01
Mathematics	FIG.
International Advanced Subs Further Pure Mathematics F1	idiary/ Advanced Level
You must have: Mathematical Formulae and Statistical Tab	les (Yellow), calculator

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

	FP1_2024_06_QP
1. (i) The matrix A is defined by	
$\mathbf{A} = \begin{pmatrix} 3k & 4k - 1 \\ 2 & 6 \end{pmatrix}$	
where k is a constant.	
(a) Determine the value of k for which A is singular.	(2)
Given that A is non-singular,	
(b) determine A^{-1} in terms of k , giving your answer in simplest form.	(2)
(ii) The matrix B is defined by	
$\mathbf{B} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$	
where p and q are integers.	
State the value of p and the value of q when B represents	
(a) an enlargement about the origin with scale factor −2	
(b) a reflection in the <i>y</i> -axis.	(2)

Question 1 continued
(Total for Question 1 is 6 marks)

2.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	$f(z) = z^3 - 13z^2 + 59z + p \qquad p \in \mathbb{Z}$	
	Given that $z = 3$ is a root of the equation $f(z) = 0$	
	(a) show that $p = -87$	(2)
	(b) Use algebra to determine the other roots of $f(z) = 0$, giving your answers in simplest form.	(4)
	On an Argand diagram	(4)
	• the root $z = 3$ is represented by the point P	
	• the other roots of $f(z) = 0$ are represented by the points Q and R	
	• the number $z = -9$ is represented by the point S	
	(c) Show on a single Argand diagram the positions of P , Q , R and S	(1)
	(d) Determine the perimeter of the quadrilateral <i>PQSR</i> , giving your answer as a simplified surd.	
		(2)

Question 2 continued

Question 2 continued

Question 2 continued
(Total for Question 2 is 9 marks)

3.	$f(x) = x^3 - 5\sqrt{x} - 4x + 7 \qquad x \geqslant 0$	
-	The equation $f(x) = 0$ has a root α in the interval [0.25, 1]	
((a) Use linear interpolation once on the interval $[0.25, 1]$ to determine an approximation to α , giving your answer to 3 decimal places.	(2)
		(3)
	The equation $f(x) = 0$ has another root β in the interval [1.5, 2.5]	
((b) Determine $f'(x)$	(2)
((c) Hence, using $x_0 = 1.75$ as a first approximation to β , apply the Newton-Raphson process once to $f(x)$ to determine a second approximation to β , giving your answer	
	to 3 decimal places.	(2)

Question 3 continued
(Total for Question 3 is 7 marks)

4.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The complex number z is defined by	
	z = -3 + 4i	
	(a) Determine $ z^2 - 3 $	(3)
	(b) Express $\frac{50}{z^*}$ in the form kz , where k is a positive integer.	
		(3)
	(c) Hence find the value of $\arg\left(\frac{50}{z^*}\right)$. ,
	Give your answer in radians to 3 significant figures.	(2)
		(2)

Question 4 continued
(Total for Question 4 is 8 marks)
(Total for Question 4 is 6 marks)

5.	The equation $5x^2 - 4x + 2 = 0$ has roots $\frac{1}{p}$ and $\frac{1}{q}$	
	(a) Without solving the equation, $p q$	
	5	
	(i) show that $pq = \frac{5}{2}$	
	(ii) determine the value of $p + q$	
		(4)
	(b) Hence, without finding the values of p and q , determine a quadratic equation with roots	
	$\frac{p}{p^2+1}$ and $\frac{q}{q^2+1}$	
	giving your answer in the form $ax^2 + bx + c = 0$ where a, b and c are integers.	(5)

Question 5 continued

Question 5 continued

Question 5 continued	
	Total for Question 5 is 9 marks)

6.	(a)	Prove	bv	induction	that for	n	—	\mathbb{Z}^{+}
•	(u)	11010	$\boldsymbol{\sigma}_{\boldsymbol{y}}$	maaction	tilut 101	11	_	ω

$$\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & (2^n - 1)r \\ 0 & 2^n \end{pmatrix}$$

where r is a constant.

(4)

$$\mathbf{M} = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}^4$$

The transformation represented by matrix M followed by the transformation represented by matrix \mathbf{N} is represented by the matrix \mathbf{B}

- (b) (i) Determine **N** in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c and d are integers.
 - (ii) Determine B

(3)

Hexagon S is transformed onto hexagon S' by matrix **B**

(c) Given that the area of S' is 720 square units, determine the area of S

(2)

Question 6 continued

Question 6 continued

Question 6 continued		
(Total for Question 6 is 9 marks)		

7.	7. In this question use the standard results for summations.	
	(a) Show that for all positive integers <i>n</i>	
	$\sum_{r=1}^{n} (12r^2 + 2r - 3) = An^3 + Bn^2$	
	where A and B are integers to be determined.	(4)
	(b) Hence determine the value of n for which	
	$\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) = 270$	(4)

Question 7 continued		
(Total for Question 7 is 8 marks)		

8.	8. Prove by induction that for $n \in \mathbb{Z}^+$		
	$f(n) = 7^{n-1} + 8^{2n+1}$		
	is divisible by 57	(6)	

Question 8 continued		
(Total for Question 8 is 6 marks)		

9.	The rectangular hyperbola H has equation $xy = c^2$ where c is a positive constant.	
	The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H	
	(a) Use calculus to show that an equation of the normal to H at P is	
	$t^3x - ty = c(t^4 - 1)$	
		(4)
	The parabola C has equation $y^2 = 6x$	
	The normal to H at the point with coordinates (8, 2) meets C at the point Q where $y > 0$	
	(b) Determine the exact coordinates of Q	(4)
	Given that	
	• the point R is the focus of C	
	• the line l is the directrix of C	
	• the line through Q and R meets l at the point S	
	(c) determine the exact length of QS	(5)

Question 9 continued

Question 9 continued		

Question 9 continued		

Question 9 continued		
	(Total for Question 9 is 13 marks)	
TO	TAL FOR PAPER IS 75 MARKS	