Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number	
Time 1 hour 30 minutes	Paper reference	wFM01/01	
Mathematics			
International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistical Tables (Yellow), calculator			

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Good luck with your examination.

1. (i)
$$f(x) = x^3 + 4x - 6$$

- (a) Show that the equation f(x) = 0 has a root α in the interval [1, 1.5]
- (b) Taking 1.5 as a first approximation, apply the Newton Raphson process twice to f(x) to obtain an approximate value of α . Give your answer to 3 decimal places. Show your working clearly.

(4)

(2)

(ii)
$$g(x) = 4x^2 + x - \tan x$$

where *x* is measured in radians.

The equation g(x) = 0 has a single root β in the interval [1.4, 1.5]

Use linear interpolation on the values at the end points of this interval to obtain an approximation to β . Give your answer to 3 decimal places.

(4)

(i) (a)

(b)	$f'(x) = 3x^2 + 4$
-	$x_1 = 1.5 - 3.375 = 1.186$
	10.75

$$x_3 = 1.186 - \frac{0.412}{8.220} = 1.1358$$
 $\lambda = 1.136$

Leave blank **Question 1 continued** (;;) 4Ans²+Ans-tan(Ans⊳ 1.5 13 -3.601419947 1.4 1.5 B 1.5-1.4 B-A -0.01419741401 Ans׊ 0.05113085003 1.5–Ans 1.44886915

2. The complex numbers z_1 , z_2 and z_3 are given by

$$z_1 = 2 - i$$
 $z_2 = p - i$ $z_3 = p + i$

where p is a real number.

(a) Find $\frac{z_2 z_3}{z_1}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p.

(3)

Given that $\left| \frac{z_2 z_3}{z_1} \right| = 2\sqrt{5}$

(b) find the possible values of *p*.

(4)

 $\frac{(\rho-i)(p+i)}{\lambda-i} = \frac{p^2+1}{2-i} \times \frac{2+i}{2+i}$

- $= \frac{2p^2 + ip^2 + 2 + i}{4 + i} = \frac{1}{5} \left(\frac{2p^2 + 2}{5} \right) + \frac{i}{5} \left(\frac{p^2 + i}{5} \right)$
- (b) $\frac{z_1 \cdot z_3}{z_1} = \frac{1}{25} \left(2p^2 + 2 \right)^2 + \left(p^2 + 1 \right)^2 = 215$

 $20 = \frac{1}{25} \left[4 \left(p^2 + 1 \right)^2 + \left(p^1 + 1 \right)^2 \right]$

 $\gamma_0 = \frac{1}{5} (\rho^2 + 1)^2$

 $|00 = \left(p^2 + 1\right)^2$

 $\rho^2 = 9$

 $p = \pm 3$

3. The triangle T has vertices A(2,1), B(2,3) and C(0,1).

The triangle T' is the image of T under the transformation represented by the matrix

$$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(a) Find the coordinates of the vertices of T'

(2)

(b) Describe fully the transformation represented by P

(2)

The 2×2 matrix **Q** represents a reflection in the *x*-axis and the 2×2 matrix **R** represents a rotation through 90° anticlockwise about the origin.

(c) Write down the matrix ${\bf Q}$ and the matrix ${\bf R}$

(2)

(d) Find the matrix RQ

(2)

(2)

(e) Give a full geometrical description of the single transformation represented by the answer to part (d).

4. A rectangular hyperbola H has equation xy = 25

The point $P\left(5t, \frac{5}{t}\right)$, $t \neq 0$, is a general point on H.

(a) Show that the equation of the tangent to H at P is $t^2y + x = 10t$ (4)

The distinct points Q and R lie on H. The tangent to H at the point Q and the tangent to H at the point R meet at the point (15,-5).

(b) Find the coordinates of the points Q and R.

(4)

$$\frac{dx}{dt} = 5 \qquad \frac{dy}{dt} = -5t^{-2}$$

$$\frac{dy}{dx} = \frac{-5t^{-2}}{5} = -t^{-2}$$

TANGENT:
$$y - 5/t = -t^{-2}(x - 5t)$$

$$t^2y - 5t = 5t - x$$

 $t^2y + x = 10t$

(b) R ON TANGENT:
$$t^2(-5) + 15 = 10t$$

$$\frac{t^{2} + 2t - 3 = 0}{(t+3)(t-1) = 0}$$

$$t=1:$$
 (5,5)

$$f(x) = (9x^2 + d)(x^2 - 8x + (10d + 1))$$

where d is a positive constant.

(a) Find the four roots of f(x) giving your answers in terms of d.

(3)

Given d = 4

(b) Express these four roots in the form a + ib, where $a, b \in \mathbb{R}$.

(2)

(2)

(c) Show these four roots on a single Argand diagram.

(a)
$$9x^2 + d = 0$$

$$\chi^{2} = -\frac{0}{9}$$

$$x = \pm \sqrt{d}/3$$

2

 $X = 8 \pm \sqrt{64 - 4(10d + 1)} = 8 \pm \sqrt{60 - 40d}$

Re (7)

(6)

6. The parabola C has Cartesian equation $y^2 = 8x$

The point $P(2p^2, 4p)$ and the point $Q(2q^2, 4q)$, where $p, q \neq 0, p \neq q$, are points on C.

(a) Show that an equation of the normal to C at P is

$$y + px = 2p^3 + 4p ag{5}$$

(b) Write down an equation of the normal to C at Q

(1)

The normal to C at P and the normal to C at Q meet at the point N

(c) Show that N has coordinates

$$(2(p^2 + pq + q^2 + 2), -2pq(p+q))$$
(5)

The line ON, where O is the origin, is perpendicular to the line PQ

(d) Find the value of $(p+q)^2 - 3pq$

(a) At
$$f'(2p^2, 4p)$$

$$\frac{dy}{dx} = \frac{4}{4p} = \frac{1}{p}$$

NORMAN:
$$y - 4p = -p(x - 2p^2)$$

 $y + xp = 2p^3 + 4p$

(b) At
$$Q(2g^{1}, 4g)$$
 $\frac{dy}{dx} = \frac{4}{4g} = \frac{1}{9}$

NOR MAL:
$$y - 4g = -g(x - 2g^2)$$

$$y + qx = 2q^3 + 4q$$

(c)
$$2p^3 + 4p - xp = 2q^3 + 4q - qx$$

$$(p-q) \times = 2(p^3-q^3+2p-2q)$$

$$= 2[(p-q)(p^2+pq+q^2) + 2(p-q)]$$

$$x = 2(p^2 + pq + q^2 + 2)$$

Question 6 continued

$$y = 2q^{3} + 4q - 92(p^{2} + pq + q^{2} + 2)$$

$$= 2q^{3} + 4q - 29p^{2} - 2pq^{2} - 2q^{3} - 4q$$

$$= -2pq(p+q)$$

$$M_{6N} = \frac{-2pq(p+q)}{2(p^2+pq+q^2+2)} = \frac{pq(p+q)}{p^2+pq+q^2+2}$$

$$M_{PQ} = \frac{4(p-q)}{2(p^2-q^2)} = \frac{2(p-q)}{(p+q)(p-q)} = \frac{2}{p+q}$$

$$-\frac{pq.(p+q.)}{p^{2}+pq+q^{2}+2}\cdot\frac{2}{p+q}=-1$$

$$2pq = p^2 + pq + q^2 + 2$$

$$p^2 - pq + q^2 = -2$$

$$(p+q)^2 - 3pq = -2$$

blank

(a) Prove by induction that for $n \in \mathbb{N}$

$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$$

(5)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + 2) = \frac{n}{6} (an^2 + bn + c)$$

where a, b and c are integers to be found.

(4)

(2)

(c) Using your answers to part (b), find the value of

$$\sum_{r=10}^{25} (r^2 + 2)$$

ASSUME
$$p(n)$$
 TRUE: $\frac{n}{2}r^2 = \frac{n}{6}(n+1)(2n+1)$

$$\frac{\sum_{r=1}^{n+1} r^2 = \frac{n}{6} (n+1)(2n+1) + (n+1)^2}{2 + 3}$$

$$= \frac{1}{6} (n+1) \left[2n^2 + n + 6n + 6 \right]$$

$$= \frac{1}{6} (n+1) \left(2n^2 + 7n + 6 \right) = \frac{1}{6} (n+1) \left(2n + 3 \right) (n+2)$$

$$P(n) \rightarrow P(n+1)$$
 by induction.
 $P(1)$ is true. So $P(n)$ is true for all $n \in \mathbb{N}$.

Question 7 continued

(b)
$$\sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} 2 = \frac{n}{6} (n+1) (2n+1) + 2n$$

$$= \frac{n}{6} \left[2n^{2} + 3n + 1 + 12 \right] = \frac{n}{6} \left[2n^{2} + 3n + 13 \right]$$

$$\frac{25}{6} \left[2 \left(25 \right)^{2} + 3 \left(25 \right) +$$

A-D	
	5272
	3272

8. Prove by induction that $4^{n+2} + 5^{2n+1}$ is divisible by 21 for all positive integers n.

(6)

$$P(1)$$
 $4^3 + 5^3 = 64 + 125 = 189 = 27 \times 7$

$$P(n) = 4^{n+2} + 5^{2n+1} = 7k \qquad k \in \mathbb{Z}.$$

NOW
$$P(n+1) - P(n)$$

$$= 4^{n+3} + 5^{2n+3} - 4^{n+2} - 5^{2n+1}$$

$$= 4.4^{n+2} + 25.5^{2n+1} - 4^{n+2} - 5^{2n+1}$$

$$= 3.4^{n+2} + 24.5^{2n+1}$$

$$= 3 \left[4^{n+2} + 5^{2n+1} \right] + 2 \cdot 5^{2n+1}$$

$$= 3.7k + 21.5^{2n+1} = 7 \left(3k + 3.5^{2n+1}\right)$$

$$P(n+1)-P(n)$$
 IS A MULTLPLE of 7.
 $P(n)$ IS A MULTLPLE of 7, so
 $P(n+1)$ IS A MULTLPLE of 7.