Isw applies throughout this scheme unless otherwise stated. The Scheme sections show the typical working of a correct response but it is the Notes sections that indicates how marks are awarded. Condone any brackets or missing brackets for matrices throughout.

Question Number	Scheme	Notes	Marks
1	$\mathbf{P} = \begin{pmatrix} p-1\\ -3 \end{pmatrix}$	$\begin{pmatrix} p+1\\p \end{pmatrix}$	
(a)	$\{\det \mathbf{P} =\} p(p-1)$	(-3)(p+1)	
	Award for any correct	expression for det P .	
	If expanded immediately allow one sign erro	r only in one term of $p^2 - p + 3p + 3$ which	M1
	can be implied by $p^2 \pm 4p + 3$ provid	ed this has not come from $ad + bc$	
	$p^2 + 2p + 3$	Correct 3TQ. Terms in any order. Ignore "=0"	Al
			(2)
(b)	If (a) is incorrect, only the M mark is availa with a 3TQ [from (a) or reattem	ble in (b) and this mark requires working pted] which $\neq 0$ for all real p	
	The M mark requires doing enough work so then needed, e.g., correct numerical expressio formula, correct completion of the square differenti The A mark always requires an	that only an explanation and conclusion is n (or value) for determinant, correct use of e, correct vertex (stated or via graph or fation) appropriate explanation and	
	non-singular/not singular/isn't/car	n't be singular or "has inverse".	
	Do not accept jus	t "shown" etc.	
	1. Discrim $d \text{ or } b^2 - 4ac = 2^2 - 4(1)$ Negative or $d < 0$ or $b^2 < 4ac$, no (real) so M1: Correct numerical expression (or value) b^2 with A1: Explanation and 2. Using for $p = \frac{-2 \pm \sqrt{2^2 - 4(1)(3)}}{2(1)} \begin{cases} = \frac{1}{2} + \sqrt{2^2 - 4(1)(3)}}{2(1)} \end{cases}$ $\{\sqrt{-8}\}$ not real/possible or complex (accept so non-sing M1: Correct numerican A1: Explanation and 3. Using comprise $p^2 + 2p + p^2 + 2p + 2p$	ninant: (1)(3) $\{=4-12 = -8\}$ solution or det $\mathbf{P} \neq 0$, so non-singular for the discriminant. Allow comparison of <i>4ac</i> and conclusion. ormula: $= \frac{-2 \pm \sqrt{-8}}{2} = -1 \pm \sqrt{2}i$ imaginary) or no solution or det $\mathbf{P} \neq 0$, so gular al expression for <i>p</i> and conclusion. oleting the square: $3 = (p+1)^2 + 2$ or min. value = 2 so non-singular $4 \pm \sqrt{-2}$ or $\{\pm\}\sqrt{2}i$ or $p = -1\{\pm\}\sqrt{2}i$ omplex roots, so non-singular $+3 = (p+1)^2 + 2$ on and conclusion.	M1 A1
	Cases con	tinue overleaf	

Question Number	Scheme	FP1_2025_0 Notes	L_MS Marks
1(b)	4. Differ	entiation:	
cont.	$\frac{\mathrm{d}y}{\mathrm{d}p} = 0 \Longrightarrow 2p + 2 = 0 \Longrightarrow$	$p = -1 \Longrightarrow p^2 + 2p + 3 = 2$	
	Minimum or "U-shape" or $a > 0$ or M1: For A1: Full explanati 5. Vertex j Vertex is "U-shape" or $a > 0$ or approp M1: Correct vertex. If preceded by $p^2 + 2p$	appropriate sketch, so non-singular -1 and 2 on and conclusion. just stated: at $(-1, 2)$ priate sketch, so non-singular $+3 = (p+1)^2 + 2$ award at that point for CTS	
	A1: Full explanati	on and conclusion.	
		1	(2)
(c)	$\mathbf{P} = \begin{pmatrix} p-1 & p+1 \\ -3 & p \end{pmatrix} \Rightarrow$ $\{\mathbf{P}^{-1} = \} \frac{1}{p^2 + 2p + 3} \begin{pmatrix} p & -p-1 \\ 3 & p-1 \end{pmatrix}$ or $\begin{pmatrix} \frac{p}{p^2 + 2p + 3} & \frac{-p-1}{p^2 + 2p + 3} \\ \frac{3}{p^2 + 2p + 3} & \frac{p-1}{p^2 + 2p + 3} \end{pmatrix}$	M1: $\frac{1}{p^2 + 2p + 3"} \times (a \text{ changed } 2 \times 2 \text{ P})$ (their changed P must not be or become constant) OR sight of Adj(P) i.e. $\begin{pmatrix} p & -p-1 \\ 3 & p-1 \end{pmatrix}$ oe which may be labelled as \mathbf{P}^{-1} A1ft: Correct inverse ft their det P [from part (a) or reattempted] provided it is (and remains) a function of <i>p</i> and accept det P unsimplified. Condone if det P clearly miscopied or rewritten incorrectly e.g., $(p+1)^2 - 2$ Allow $-1(p+1)$ for $-p-1$ but A0 if $-(-3)$ for 3 Isw when a correct or correct ft answer is seen unless a value for <i>p</i> is substituted	M1A1ft
			(2) Total (
			E Total 6

Question Number	Scheme	FP1_2025_ Notes	01_MS Marks
2(a)		Attempts both $f(0,3)$ and $f(0,4)$ and	
2(a)	$f(0.3) = \dots \{3.4563\}$	achieves a positive value for $f(0,3)$ and a	M1
	$f(0.4) = \{4.0615\}$	a negative value for f (0.4)	1411
		Both $f(0.3)$ = awrt 3.5 or 3.4 (truncated) &	
		f(0.4) = awrt - 4.1 or -4.0 or -4	
		(truncated), sign change oe, continuity	
	Sign change oe and $\{f(x) is\}$ continuous	and a minimal conclusion e.g., "root" or	A1
	\Rightarrow root {between $x = 0.3$ and $x = 0.4$ }	"shown". A graph alone is insufficient.	
		Allow "positive, negative" or $f(0.3) > 0$, f	
		(0.4) < 0 or I(0.3)I(0.4) < 0 for "sign	
		change .	(2)
(h)		Indices must be processed for any marks	(2)
	$2 7x - 4\sqrt{x}$ 2 - 2 - 25	M1: For $r^n \rightarrow r^{n-1}$ at least once	
	$f(x) = x^2 - \frac{1}{x^3} = x^2 - 7x^{-2} + 4x^{-2.5}$	M1. FOI $\lambda \rightarrow \dots \lambda$ at least once $\lambda_1: 2$ correct terms simplified or	M1A1A1
	$f'(r) - 2r + 14r^{-3} - 10r^{-3.5}$	unsimplified	
	$1 (\lambda) - 2\lambda + 1 \exists \lambda = 10\lambda$	A1: All correct simplified or unsimplified	
	If quotient/product rule used award I	M1 for any evidence of $x^n \rightarrowx^{n-1}$	
	$\left(e \sigma r^2 \rightarrow 2r\right)$ Their final expression in the	uese cases must imply 2 correct terms for the	
	(e.g., x , 2x). Then mut expression in the	more that many 2 contest terms for the	
	IIISLA Quotient r	mark.	
	$3(7, 2, -\frac{1}{2}) - 2^{2}(7, 4, \frac{1}{2})$		
	$2x - \frac{x^{2}(7-2x^{2}) - 3x^{2}(7x-4x^{2})}{2x-7} - 2x - \frac{7}{7}$	$\frac{1}{2}x^{3}-2x^{\frac{1}{2}}-21x^{3}+12x^{\frac{1}{2}}}{2}-2x-\frac{-14x^{3}+10x^{\frac{1}{2}}}{2}$	
	$\left(x^3\right)^2$	x^6 $-2x$ x^6	
	Product rule on x^{-3}	$(7x-4\sqrt{x})$ leads to	
	$2x - \left[x^{-3}\left(7 - 2x^{-\frac{1}{2}}\right) + \left(-3x^{-4}\right)\left(7x - 4x^{\frac{1}{2}}\right)\right]$	$\left[2\right] = 2x - \left[7x^{-3} - 2x^{-\frac{7}{2}} - 21x^{-3} + 12x^{-\frac{7}{2}}\right]$	
			(3)
(c)		Obtains a value from an attempt to apply	
		the correct Newton-Raphson formula.	
	f(03)	Allow slips with substitution/miscopying	
	$x_1 = 0.3 - \frac{\Gamma(0.5)}{\Gamma(0.2)} = \dots$	and may be using an incorrectly simplified $f(x)$ implied by switt 0.22 (0.222002)	
	1 (0.3)	1(x). Implied by awit 0.52 (0.522005)	
	$(0.2^2 7(0.3) - 4\sqrt{0.3})$	<u>even if $f'(x)$ is incorrect</u> .	
	$0.3 - 0.3^{-0.3^$	0.33 or 0.328 (0.3276079)	M1
	$(20.3)^{-0.5}$ $(2(0.3)^{+14}(0.3)^{-3} - 10(0.3)^{-3.5})$	If not implied and no substitution is seen	
		accept as minimum	
	$\begin{bmatrix} -0.2 & 3.456304816 & -0.2 + 0.02200316 & - \end{bmatrix}$	$f(0.3)$ $f(x_0)$	
	$\left\{ -\frac{-157.0821698}{-157.0821698} - 0.5 + 0.02200310 = \right\}$	$10.3 - \frac{1}{f'(0.3)} = \dots$ but $x_0 - \frac{1}{f'(x_0)} = \dots$	
		is only acceptable if $x = 0.3$ is seen	
		If only a value is seen it must round to 0.22	
		For awrt 0 322 Must be decimal	
		Ignore further iterations	
	0.322	" α =" is not required - just look for awrt	Al
		0.322 regardless of how it is labelled	
			(2)

Question Number	Scheme	FP1_2025_ Notes	01_MS Marks
2(d)	f(1.3) = -0.37613 f(1.5) = 0.590438 Examples: $\frac{"0.590438"}{1.5 - \beta} = \frac{-("-0.37613")}{\beta - 1.3}$ $\frac{1.5 - \beta}{\beta - 1.3} = \frac{"0.590438"}{-("-0.37613")}$ $\frac{1.5 - \beta}{1.5 - 1.3} = \frac{"0.590438"}{"0.590438" - ("-0.37613")}$ $\beta = \frac{1.3("0.590438") - 1.5("-0.37613")}{"0.590438" - ("-0.37613")}$ $\Rightarrow \beta =$	Obtains a negative value for f (1.3) and a positive value for f (1.5), forms a correct equation for these values and solves to obtain a value. Apply BOD if only $ f(1.3) $ and $ f(1.5) $ seen. Note f(1.5) may be seen as $\frac{64\sqrt{6}-93}{108}$. Accept "f (1.3)" & "f (1.5)" in equation if values for these seen. May use $\frac{af(b)-bf(a)}{f(b)-f(a)}$ oe. Allow e.g., x for β . If their variable denotes e.g., the distance between (1.3, 0) and (β , 0) then 1.3 must be added later. Implied by awrt 1.378 (1.3778285). Not by real root of 1.377 (1.376561) Must be using the correct interval.	M1
	=1.378	For awrt 1.378. Must be decimal. Ignore further iterations " β =" is not required - just look for awrt 1.378 regardless of how it is labelled	A1
	Alternative via $y - ("-0.37613") = \frac{"0.590438" - ("-1.5-1.3]}{1.5-1.3}$ M1 for a correct equation with their f (1.3) May use (1.5, "0.590438") as the point. y = mx + c (finds c from a correct	a line equation: $\frac{0.37613"}{3}(x-1.3) \text{ then } y = 0 \Longrightarrow x =$ and f (1.5), setting $y = 0$ and solving for x. Could also see equivalent attempts using t equation, puts $y = 0$ and solves)	
			(2) Total 9

Question Number	Scheme	FP1_2025_0 Notes	1_MS Marks
3	Score B0 in (a) if the roots $\frac{1 \pm \sqrt{14}i}{2}$ are seen	and then answers are just written down. The	
	three subsequent method marks require use of 0000010 is likely. Use Review for as	of the relevant identities. If not, a maximum mbiguous cases you are not sure about.	
(a)	$3x^{2} - 2x + 5 = 0 \Longrightarrow$ $\alpha + \beta = \frac{2}{3}, \alpha\beta = \frac{5}{3}$	Both values correct. Consider in order presented if not labelled	B1
			(1)
(b)	$\alpha^{2} + \beta^{2} = \left(\alpha + \beta\right)^{2} - 2\alpha\beta = \left(\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right)^{2} = \dots$	Uses correct identity with their sum and product to obtain a value for $\alpha^2 + \beta^2$	M1
	$=-\frac{26}{9}$	Correct value from correct sum and product	A1
			(2)
(c)	The work for the first two marks m	ay be embedded within a quadratic	
	expression	Obtains a value for the new sum from a	
	$\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta} = \alpha + \beta + \frac{\alpha + \beta}{\alpha\beta} = "\frac{2}{3}" + \frac{"\frac{2}{3}"}{"\frac{5}{3}"} = \dots \left(\frac{16}{15}\right)$	$\frac{\text{correct numerical expression (which could}}{\text{be implied})} \text{ with their sum and product.}$ Allow use of equivalent numerical expressions following use of e.g. $\frac{\alpha\beta(\alpha+\beta)+\alpha+\beta}{\alpha\beta}$	1st M1 (Sum)
	$\left(\alpha + \frac{1}{\alpha}\right)\left(\beta + \frac{1}{\beta}\right) = \alpha\beta + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha\beta} = \alpha\beta + \frac{\alpha^2 + \beta^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= "\frac{5}{3}" + \frac{"-\frac{26}{9}"}{"\frac{5}{3}"} + \frac{1}{"\frac{5}{3}"} = \dots \left(\frac{8}{15}\right)$	Obtains a value for the new product via a <u>correct numerical expression (which could</u> <u>be implied)</u> with their sum, product and answer to (b) which may have been reattempted. Allow use of equivalent numerical expressions following use of e.g $\frac{(\alpha\beta)^2 + \alpha^2 + \beta^2 + 1}{\alpha\beta}$	2nd M1 (Product)
	$x^{2} - "\frac{16}{15}"x + "\frac{8}{15}" = 0$	Correctly applies x^2 – (their new sum) x + their new product with values to obtain a 3TQ. Not dependent. Accept appropriate values for <i>p</i> , <i>q</i> and <i>r</i> for this mark.	M1
	$15x^2 - 16x + 8 = 0$	Correct equation – not just values for <i>p</i> , <i>q</i> and <i>r</i> . Terms in any order but must have "=0". Allow any integer multiple. Must come from $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ Condone a different variable (e.g., <i>z</i>)	A1
			(4) Total 7

Question	Scheme	FP1_2025_0 Notes	1 <u>MS</u> Marks
A Number	$f(z) = 6z^3 + Az^2 + Bz + C$	Condone work in x throughout	
(a)	$(z=)\frac{2}{2}-\frac{\sqrt{17}}{2}i$	Correct conjugate. Must be seen in (a)	B1
			(1)
(b)	$\left(z - \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right) \left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right) \left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right) \left(\alpha + \beta = \frac{2}{3} + \frac{\sqrt{17}}{3}i + \frac{2}{3} - \frac{\sqrt{17}}{3}i = \dots \left\{\frac{4}{3}\right\}, \alpha\beta = \left(\frac{2}{3} + \frac{\sqrt{13}}{3}i\right)$ M1: Completes a correct strategy for finding real coefficients. May be slips with the expression score M0 if the starting point is clearly A1: Any correct three Allow any multiple of $z^2 - M$ May see $\left(3z - \left(2 + \sqrt{17}i\right)\right) \left(3z - \left(2 - \sqrt{17}i\right)\right)$	$\left(\frac{1}{3} \right) = \dots \left\{ z^2 - \frac{4}{3}z + \frac{7}{3} \right\} \text{ or e.g.}$ $\left(\frac{1}{3} - \frac{\sqrt{17}}{3}i \right) = \dots \left\{ \frac{4}{9} + \frac{17}{9} = \frac{7}{3} \right\} \Rightarrow \dots \left\{ z^2 - \frac{4}{3}z + \frac{7}{3} \right\}$ $ig a \text{ quadratic factor and obtains a 3TQ with ansion or calculation/forming quadratic but}$ $y \left(z + \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i \right) \right) \left(z + \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i \right) \right)$ $term quadratic factor.$ $\left(-\frac{4}{3}z + \frac{7}{3} \text{ e.g., } 3z^2 - 4z + 7 \right)$ $or \left(3z - 2 \right)^2 = \left(\pm \sqrt{17}i \right)^2 \Rightarrow \dots \left\{ 9z^2 - 12z + 21 \right\}$	M1A1
	$6\left(z+\frac{3}{2}\right)\left(z^2-\frac{4}{3}z+\frac{7}{3}\right) = \dots \text{ or}$ Multiplies their 3 term quadratic factor with multiple) to obtain a 4TC with $\left(z+\frac{3}{2}\right)\left(z^2-\frac{4}{3}z+\frac{7}{3}\right)$	e.g., $(2z+3)(3z^2-4z+7) =$ In real coefficients (or multiple) by $z + \frac{3}{2}$ (or ith real coefficients so allow $= \left\{ z^3 + \frac{z^2}{6} + \frac{z}{3} + \frac{7}{2} \right\}$	M1
	$\{f(z) = \}6z^3 + z^2 + 2z + 21$ or $A = 1, B = 2, C = 21$	A1: Any two correct values for <i>A</i> , <i>B</i> or <i>C</i> (could be embedded) A1: Fully correct expression (ignore an "=0") or three correct values	A1A1
	Note that if the complex factor $\left(z - \frac{3}{2}\right)\left(z - \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right)\left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right) = \left(\frac{1}{3}\right)$ $= z^3 + \frac{1}{6}z^2 + \frac{1}{3}z + \frac{7}{2}z^2$ Score the first 2 M marks together for M0M1 is possible e.g., with $\left(z + \frac{3}{2}\right)^2$ Any correct multiple of the 4TC score	by some not multiplied first e.g., $z^{2} + \left(\frac{5}{6} - \frac{\sqrt{17}}{3}i\right)z - 1 - \frac{\sqrt{17}}{2}i\right)\left(z - \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$ $\Rightarrow 6z^{3} + z^{2} + 2z + 21$ obtaining a 4TC with real coefficients. $\left(z + \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\right)\left(z + \left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right)\right)$ is the first A then score as main scheme	
			(5)

Question	FP1_2025_0	1_MS Marks
Number		IVIAIKS
4(b)	Alternative 1: Substituting to obtain simultaneous equations $z = -\frac{3}{2} \Rightarrow -\frac{81}{4} + \frac{9}{4}A - \frac{3}{2}B + C = 0$ $z = \frac{2}{4} \pm \frac{\sqrt{17}}{4}i \Rightarrow -\frac{188}{4} \pm \frac{10\sqrt{17}}{4}i + A\left(-\frac{13}{4} \pm \frac{4\sqrt{17}}{4}i\right) + B\left(\frac{2}{4} \pm \frac{\sqrt{17}}{4}i\right) + C = 0$	
	3 3 9 9 (9 9) (3 3) $\Rightarrow -\frac{188}{9} - \frac{13}{9}A + \frac{2}{3}B + C = 0, \pm \left(-\frac{10\sqrt{17}}{9} + \frac{4\sqrt{17}}{9}A + \frac{\sqrt{17}}{3}B = 0\right)$	
	M1: Substitutes $-\frac{3}{2}$ to obtain an equation and substitutes one of $\frac{2}{3} \pm \frac{\sqrt{17}}{3}$ and equates real and imaginary parts to obtain two further equations. All equations must have real coefficients and each variable must appear in at least one equation. A1: All three correct equations	
	$13A - 6B - 9C = -188, \ 4A + 3B = 10, \ 9A - 6B + 4C = 81$ $\implies A = 1, \ B = 2, \ C = 21$	
	M1: Solves to obtain real values for <i>A</i> , <i>B</i> and <i>C</i> A1: Two correct values A1: All three correct values	
	Alternative 2: Sum/product/pairwise product sum of roots of cubic $sum = \frac{2}{3} + \frac{\sqrt{17}}{3}i + \frac{2}{3} - \frac{\sqrt{17}}{3}i - \frac{3}{2} = \dots \left\{ -\frac{1}{6} \right\} = -\frac{A}{6}$	
	pairwise product sum = $-\frac{3}{2}\left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right) - \frac{3}{2}\left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right) + \left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right) = \dots \left\{\frac{1}{3}\right\} = \frac{B}{6}$ product = $-\frac{3}{2}\left(\frac{2}{3} + \frac{\sqrt{17}}{3}i\right)\left(\frac{2}{3} - \frac{\sqrt{17}}{3}i\right) = \dots \left\{-\frac{7}{2}\right\} = -\frac{C}{6}$	
	M1: Obtains one equation in A , one in B and one in C all with real coefficients A1: All three correct equations	
	$-\frac{1}{6} = -\frac{A}{6} \Longrightarrow A = 1, \frac{1}{3} = \frac{B}{6} \Longrightarrow B = 2, -\frac{7}{2} = -\frac{C}{6} \Longrightarrow C = 21$	
	M1: Solves to obtain real values for <i>A</i> , <i>B</i> and <i>C</i> Note that <i>A</i> , <i>B</i> and <i>C</i> would be implied by e.g., $-\frac{1}{6}, \frac{1}{3}, -\frac{7}{2} \Rightarrow x^3 + \frac{1}{6}x^2 + \frac{1}{3}x + \frac{7}{2}$ A1: Two correct values A1: All three correct values	
	If real values for any of the sum/pairwise product sum/product are not explicitly seen allow the M marks if real values for A , B and C (which could be embedded) are obtained. The first A mark would then require all values correct (or a correct cubic) to be awarded.	
	It is possible to e.g., find A and C as above and then use e.g., $f\left(-\frac{3}{2}\right) = 0$ to determine	
	<i>B</i> . In such cases the first M mark is scored when three equations have been attempted.	

4(b)	FP1_2025_0	1_MS
	Attempts that include long division:	
	If they find a quadratic factor as in the main scheme e.g., $z^2 - \frac{4}{3}z + \frac{7}{3}$ allow M1A1 as	
	before. Dividing it into $f(z)$ can lead to equations $B - 14 + \frac{4}{3}A + \frac{32}{3} = 0$ and	
	$C - \frac{7}{3}(A+8) = 0$ and these could be used with the equation $-\frac{81}{4} + \frac{9}{4}A - \frac{3}{2}B + C = 0$	
	from using $f(-\frac{3}{2}) = 0$ or long division by $z + \frac{3}{2}$. Score the next M for obtaining real	
	values for all constants and the A marks as usual. Other attempts including long division that do not find the quadratic factor as per the main scheme we will score as follows. Award the first M1 for credible work to obtain enough equations with real coefficients involving A, B and C so that values could be found, followed by A1 for correct equations. The next M1 is for solving to obtain values for A, B and C and then A1 for two correct values and final A1 for all 3 correct. If divided by $z + \frac{3}{2}$ the quadratic factor is $6z^2 + (A-9)z + B - \frac{3}{2}A + \frac{27}{2}$	
	It is possible to apply the quadratic formula to this and equate the answer to $\frac{2}{3} \pm \frac{\sqrt{17}}{3}$ i and	
	generate further equations that way. (Long division by complex factors is unlikely but could lead to the other equations in Alt 1)	
	There are potentially a lot of possible precise routes involving long division and coefficient comparison etc. but the above mark scheme principles apply. Use Review for any such approaches you are not sure about.	

Question Number	Scheme	FP1_2025_0 Notes	1_MS Marks
5(a)	$r(r+1)(r+5) = r^{3} + 6r^{2} + 5r$	Correct expansion. May be implied	B1
	$\begin{cases} \sum_{r=1}^{n} \left(r^{3} + 6r^{2} + 5r \right) = \sum_{r=1}^{n} r^{3} + 6 \sum_{r=1}^{n} r^{2} + 5 \sum_{r=1}^{n} r = \\ \text{M1: Having achieved two terms of the correct one of } \sum_{r=1}^{n} r^{3}, \sum_{r=1}^{n} r = \\ \text{A1: Correct expression} \end{cases}$	$\frac{1}{4}n^{2}(n+1)^{2} + 6 \times \frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1)$ ect form from the expansion, replaces at least r^{2} or $\sum r$ correctly ession in any form	M1A1
	$= \frac{1}{4}n(n+1)[n(n+1)+4(2n+1)]$ Obtains $\frac{1}{4}n(n+1)[]$ May be implied by sul Note they might ex $\frac{1}{4}n(n^3+10n^2+23n+14)$ or $\frac{1}{4}(n^4+10n^3)$ Allow factor reconst Condone poor algebra but if no 3TQ is seen straight to an answer it must follow. Expect expands $\frac{1}{4}n(n+a)(n+b)(n+b)$	$[+10] \Rightarrow \frac{1}{4}n(n+1)(n^{2}+9n+14)$ where is a 3TQ in <i>n</i> bsequent correct work. pand first to get e.g., $+23n^{2}+14n) \text{ or } \frac{1}{4}n^{4} + \frac{5}{2}n^{3} + \frac{23}{2}n^{2} + \frac{7}{2}n$ cruction after solving. In or the expanded form is wrong and they go to a full method if e.g., expands or partially $+c) \text{ and equates coefficients.}$	d M1
	4 Requires prev	vious M mark.	
	$\frac{1}{4}n(n+1)(n+2)(n+7)$	Correct expression. Not just values. Brackets in any order. Accept $\frac{n}{4}(n+1)(n+2)(n+7)$ or $\frac{n(n+1)(n+2)(n+7)}{4}$	A1
		-	(5)
(b)	$20 \times 21 \times 25 + 21 \times 223$ $= \frac{1}{4} \times 40(40+1)(40+2)(40+7) - \frac{1}{4} \times 40(41)(42)(47) + \frac{1}{4} \times 40$	$ \times 26 + + 40 \times 41 \times 45 - \frac{1}{4} \times 19(19+1)(19+2)(19+7) = - \frac{1}{4} \times 19(20)(21)(26) = - 5) - \sum_{r=1}^{19} r(r+1)(r+5)$ using f (40) - f (19). t components of the products) provided a full above is seen. they are using their result from part (a). 0 - 51870 = but allow e.g., - \frac{1}{4} \times 207480 = e of the correct form. de up values for <i>a</i> , <i>b</i> and <i>c</i> .	M1
	$= 757\ 470$	757 470 only. Allow 7.5747×10 ⁵	A1
		isw ii subsequentiy rounded	(2)
			Total 7

Question Number	Scheme	FP1_2025_ Notes	01_MS Marks
6(a)	$xy = 100 \Rightarrow y = 100x^{-1} \Rightarrow \frac{dy}{dx} = -100x^{-2} \text{ or } \Rightarrow x\frac{dy}{dx}$ Any correct expression for $\frac{dy}{dx}$. Allow for a correct May use $-\frac{dx}{dy}$. Condom	$+ y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \text{ or } x = 10t, y = \frac{10}{t} \Rightarrow \frac{dy}{dx} = \frac{-10t^{-2}}{10}$ Does not need to be in terms of t. $\frac{dx}{dy} = -\frac{x^2}{100} \text{ or } -\frac{x}{y}$ e just $\frac{dy}{dx}$ or $m_{\{T\}} = -\frac{1}{t^2}$.	B1
	$m_T = -\frac{100}{100t^2} \Rightarrow m_N = t^2 \text{ or } m_T = -\frac{1}{100}$ Correct use of the perpendicular gradient runnary May come directly Starting with just $m_N = 1$	$\frac{0}{2t} \implies m_N = t^2 \text{ or } m_T = -t^{-2} \implies m_N = t^2$ where the obtain a normal gradient at $\left(10t, \frac{10}{t}\right)$ ctly from $-\frac{dx}{dy}$.	M1
	$y - \frac{10}{t} = t^{2} (x - 10t) \text{ or}$ $y = t^{2}x + c, \frac{10}{t} = t^{2} \times 10t + c \Longrightarrow c = \dots \left\{ \frac{10}{t} - 10t^{3} \right\}$	Correctly forms the normal equation with a changed gradient in terms of t. Condone late substitution of $x = 10t$ and/or $y = \frac{10}{t}$ into gradient if initial gradient not in terms of t (the previous mark is then accessible as is the A1*)	M1
	e.g., $ty-10 = t^3x-10t^4$ or $ty = t^3x$ Obtains the given answer with intermedia reversed and terms/products could be in $10t^4$ Allow e.g., $t^3x - ty$ All previous ma	+10-10 $t^4 \Rightarrow t^3x - ty = 10(t^4 - 1)^*$ te line and no errors. Final answer could be a different order but must have factorised -10. written as $t(xt^2 - y)$ rks are required.	A1*
			(4)

Question	Scheme	FP1_2025_ Notes	01_MS Marks
6(b)	$x = 0 \Rightarrow -ty = 10(t^4 - 1) \Rightarrow y = \dots \left\{-\frac{10(t^4 - 1)}{t}\right\}$	Substitutes $x = 0$ to find y for Q May just restate their c from (a). Apply BOD	M1
		throughout if the minus sign just disappears	
		Correct method for the area of the triangle	
	$1(10(t^4-1))$	and sets $= 750$ or equivalent work	
	$\frac{1}{2} \left(\frac{1}{t} \right) \times 10t = 750$	e.g., $\left("10t^3 - \frac{10}{t} " \right) \times 10t = 1500$	
	May see <i>x</i> -axis intercept also used e.g.,	Allow with their y (and possibly their x-axis	M1
	$1 \frac{1}{10}(t^4 - 1) \frac{10}{10}(t^4 - 1) \frac{10}{10}($	intercept) and allow for the sign of their y	
	$\frac{1}{2} \times \frac{1}{t^3} \times \left(\frac{1}{t} + \frac{1}{t}\right) = 750$	(and/or x) coordinate uncorrected and note	
	Allow with modulus signs used	that $-10t$ may be used with uncorrected y. There are no marks if they have Ω on the	
	Anow with modulus signs used	r-axis instead of the y-axis	
	"Shoelace" methods only get credit w	hen the determinants are processed. Look for	
	express	ions as above.	
	We will score the first 2 M marks	s in this order for this possible variation:	
	$\frac{1}{2} y_{\varrho} \times 10t = 750 \Longrightarrow y_{\varrho} = -\frac{150}{t}$ 1st M1:	Uses a correct triangle method to find y coord.	
	$(0, \frac{-150}{t})$ in $t^3x - ty = 10(t^4 - 1) \Longrightarrow 150 =$	$10(t^4-1)$ 2nd M1: Subs. into normal equation	
	$\frac{1}{2} \left(\frac{10(t^4 - 1)}{t} \right) \times 10t = 750 \text{ or } \frac{1}{2} \left(10t^3 - \frac{10}{t} \right) \times 10t = 750$	0 or $\frac{1}{2} \left(-\frac{10(t^4 - 1)}{t} \right) \times -10t = 750$ or $\frac{1}{2} \left(\frac{10}{t} - 10t^3 \right) \times -10t = 750$	
	$\Rightarrow \left\{ 50t^4 - 50 \right.$	$=750 \Longrightarrow t^{4} = \dots \{16\}$	
	Reaches $t^4 =$ (or $t^2 =$ or $t =$) from	om a correct equation. Allow if is negative.	M1
	If they additionally work with an	incorrect equation then ignore this work.	
	Modulus signs must have been remo	oved although this could happen later in the	
	working, but do be vigilant with atten	npts where e.g., the "16" has clearly not been	
	obtained	l appropriately.	
	$\left\{ \Rightarrow t = \pm 2 \Rightarrow \left(10 \times \pm 2, \ \frac{10}{\pm} \right) \right\}$	$\left(\frac{0}{2}\right) \Rightarrow \left\{ (20, 5), (-20, -5) \text{ only} \right\}$	
	A1: One corre	ct pair of coordinates	
	A1: Both correct and no ot	hers including complex solutions.	A1
	Allow for $x = \dots, y = \dots$ but	t must be clearly paired correctly	A1
	Allow $\pm (20, 5)$ or $(\pm 20, \pm 5)$) Score A1 A0 for e.g., $(\pm 20, \pm \frac{10}{2})$	
	Do not accept correct coordinates if t	they have come from an incorrect equation.	
	Note that the second pair of	of coordinates might be deduced.	
			(5)
			l otal 9

r			1 MC
Question Number	Scheme	Notes	Marks
7(i)(a)	A rotation of $240^{\circ}/\frac{4\pi}{3}$ (anti/counter clocky M1: Any rotation. Conder A1: Fully correct description. Condone n mentioned assume anticlockwise so allow $-120^{\circ}/-\frac{2\pi}{3}$ (anticlockwise) or -240° Must be a single	wise) about/around/at centre (0, 0)/origin/O one "rotate" for all marks hissing degrees symbol. If direction is not 7 rotation of $120^{\circ}/\frac{2\pi}{3}$ clockwise about O. P/ $-\frac{4\pi}{3}$ clockwise are also acceptable. e transformation.	M1A1
			(2)
(b)	$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	Correct matrix. Allow if they omit (b) and this matrix is seen in (c).	B1
			(1)
(c)	$\{\mathbf{C} = \mathbf{A}\mathbf{B} = \} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} " \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} "$	Forms a correct product of matrices with their B Condone a clear miscopy of A	M1
	$ \begin{pmatrix} -1 & \frac{\sqrt{3}}{2} \\ -\sqrt{3} & -\frac{1}{2} \end{pmatrix} $	Correct matrix. Any equivalent. No evidence of incorrect method for product or any incorrect matrices.	A1
			(2)

Question Number	Scheme	Notes	Marks
7(ii)(a)	$(k - 2)(k) (k^2 - 2k) ((35))$	Multiplies to obtain one correct element.	
	$ \begin{pmatrix} \kappa & -2 \\ -1 & 2k \end{pmatrix} \begin{pmatrix} \kappa \\ k \end{pmatrix} = \begin{pmatrix} \kappa & -2k \\ -k + 2k^2 \end{pmatrix} \left\{ = \begin{pmatrix} 33 \\ 91 \end{pmatrix} \right\} $	May just see e.g., $\begin{pmatrix} k \\ -2 \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix} = \begin{pmatrix} k^2 - 2k \end{pmatrix}$	M1
	$k^{2} - 2k - 35 = 0 \Longrightarrow k = \dots \text{or}$ Attempts to solve one correct quadratic equ working. This mark can also be awarded combining correct $3k^{2} - 3k - 126 \left\{ = k^{2} - k - 42 \right\}$ If they eliminate to a correct equation that correct e.g., $3k^{2} - 147 = 0 \Longrightarrow k^{2} = 49 \Longrightarrow$	$2k^{2} - k - 91 = 0 \Longrightarrow k =$ uation. Usual rules. One root correct if no d if they solve a correct 3TQ following et equations e.g., $2 = 0 \} = 0 \Longrightarrow k = \{7, -6\}$ at isn't a 3TQ then one solution must be $k = \{\pm\}7 \text{ or } -3k + 21 = 0 \Longrightarrow k = 7$	M1
	If reduced to a linear equation allow all marks otherwise 1100 max if the evidence is that only one quadratic has been solved (e.g., 2 solutions from one equation offered even if one is "rejected" etc. rather than crossed out - ignore all crossed out work)		
	$k^{2}-2k-35 = 0 \Longrightarrow k = \dots \{-5, 7\}$ and $2k^{2}-k-91 = 0 \Longrightarrow k = \dots \{-\frac{13}{2}, 7\}$ Or one of the above with one of $3k^{2}-3k-126 = 0 \{ \Longrightarrow k^{2}-k-42 = 0 \} \Longrightarrow k = \dots \{7, -6\}$ or $3k^{2}-147 = 0 \{ \Longrightarrow k^{2} = 49 \} \Longrightarrow k = \dots \{7, -7\}$ Or $\Rightarrow -3k+21 = 0 \Longrightarrow k = 7$ Factorisations shown below	Attempts to solve two correct quadratic equations (or one correct linear). Usual rules. One root correct if no working. Allow if they obtain 7 from one equation and verify correctly that it works in the second equation (or shows that the other root doesn't work). It is valid to solve one of the equations with a combined equation. Allow if equations not "extracted" from matrices e.g., $\binom{k^2 - 2k}{-k + 2k^2} = \binom{35}{91}$	M1
	$k^{2}-2k-35 = (k+5)(k-7), \ 2k^{2}-k-91 \Rightarrow (2k+13)(k-7), \ k^{2}-k-42 \Rightarrow (k+6)(k-7), \ k^{2}-49 \Rightarrow (k-6)(k-7), \ k^{2}-49 $		(k-7)(k-7)
	$\mathbf{M} = 7 following use of 2 correct equations. No incorrect values of k or incorrect factorisations etc seen. No other values offered. Two correct equations (which could be "unextracted") followed by 7 only is sufficient. Condone poor matrix work such as using (k, k) or matrix multiplications written the wrong way around provided correct elements/equations are obtained.\mathbf{M} \begin{pmatrix} k \\ k \end{pmatrix} = \begin{pmatrix} 35 \\ 91 \end{pmatrix} \Rightarrow \begin{pmatrix} k \\ k \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} 35 \\ 91 \end{pmatrix} \text{ and } \mathbf{M}^{-1} = \frac{1}{2k^2 - 2} \begin{pmatrix} 2k & 2 \\ 1 & k \end{pmatrix} \Rightarrow \begin{pmatrix} k \\ k \end{pmatrix} = \frac{1}{2k^2 - 2} \begin{pmatrix} 70k + 182 \\ 35 + 91k \end{pmatrix} \mathbf{M} \text{ if For 70k + 182 or 35 + 91k} k (2k^2 - 2) = 70k + 182 \Rightarrow k^3 - 36k - 91 \{= (k - 7)(k^2 + 7k + 13)\} = 0 \Rightarrow k = 7 \{\text{or } \frac{-7\pm\sqrt{3}i}{2}\} k (2k^2 - 2) = 35 + 91k \Rightarrow 2k^3 - 93k - 35 \{= (k - 7)(2k^2 + 14k + 5)\} = 0 \Rightarrow k = 7 \{\text{or } \frac{-7\pm\sqrt{39}}{2} \text{ or awrt} - 0.38 \text{ or } -6.6\}$		A1
			(4)
	M1: Obtains a correct roo M1: Obtains a correct root from two correct OR 70 k +182 = 3 M1 M1: Obtains k = 7 fr A1: k = 7 and no incorrect Condone poor matrix work such as using (k	t from a correct equation t equations or verifies as mentioned above $85+91k \Rightarrow k=7$ rom this linear equation values/factorisations etc. k, k) or matrix multiplications written the t elements/equations are obtained.	
	wrong way around provided correc	t elements/equations are obtained.	

Question Number	Scheme	FP1_202 Notes	5_01_MS Marks
7(ii)(b)	$\left\{ \begin{vmatrix} "7" & -2 \\ -1 & 2 \times "7" \end{vmatrix} \Rightarrow \right\} "7" \times 2 \times "7" - (-1)(-2) \{=96\}$	Correct numerical expression for det M correct for any of their values of k. May be implied by sight of "96"×336 (or e.g. 32256). Allow an invented value of k	M1
	$\Rightarrow \frac{7}{2} \left\{ \text{or } 3.5, \ 3\frac{1}{2}, \frac{336}{96} \right\}$	Correct value and <u>no others</u> . Any equivalent	A1
	If points and transformed points are used a correct numerical expression for the area scale factor or its reciprocal must be achieved for the M mark		(2)
			Total 11

Question Number	Scheme/Notes	_01_MS Marks
8	Condone work in <i>n</i> instead of <i>k</i> throughout	
8(i)	$n = 1 \left\{ in \begin{pmatrix} 1-3n & 9n \\ -n & 3n+1 \end{pmatrix} \right\} \Longrightarrow \begin{pmatrix} 1-3 & 9 \\ -1 & 3+1 \end{pmatrix} = \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}$ $(-2 9) (-2 9)^{1}$	
	Obtains $\begin{pmatrix} -1 & 4 \end{pmatrix}$ or $\begin{pmatrix} -1 & 4 \end{pmatrix}$ with (minimal) substitution seen.	B1
	One of $1-3$ or $1-3(1) \to -2$ or $9(1) \to 9$ or $-(1) \to -1$ or $3+1$ or $3(1)+1 \to 4$	
	No requirement to say "true" (oe) yet. Ignore further verifications for $n = 2$ etc.	
	{Assume true for $n = k$:} $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^k = \begin{pmatrix} 1-3k & 9k \\ -k & 3k+1 \end{pmatrix}$	
	$\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+1} = \begin{pmatrix} 1-3k & 9k \\ -k & 3k+1 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} \text{ or } \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1-3k & 9k \\ -k & 3k+1 \end{pmatrix}$ Completes an attempt to form $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+1}$ in terms of k	
	$= \begin{pmatrix} -2+6k-9k & 9-27k+36k \\ 2k-3k-1 & -9k+12k+4 \end{pmatrix} \text{ or } \begin{pmatrix} -2+6k-9k & -18k+27k+9 \\ -1+3k-4k & -9k+12k+4 \end{pmatrix} \text{ or } \begin{pmatrix} -2-3k & 9+9k \\ -k-1 & 3k+4 \end{pmatrix}$ Correct unsimplified or simplified matrix with no unexpanded expressions	A1
	$ \begin{cases} = \begin{pmatrix} -2 - 3k & 9 + 9k \\ -k - 1 & 3k + 4 \end{pmatrix} \} = \begin{pmatrix} 1 - 3(k+1) & 9(k+1) \\ -(k+1) & 3(k+1) + 1 \end{pmatrix} $ Reaches a correct matrix fully in terms of $k + 1$ (terms in any order and allow for any $k + 1$ to be written as $1 + k$) with no errors. Meet in the middle approaches must be convincing. Requires previous two marks	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for (all) n . Correct conclusion/narrative. All the elements in bold should be satisfied. Please consider the narrative and conclusion together. Allow poor phrasing if the intention is clear. "Assume $n = k$ " in the narrative followed by "true for $n = k + 1$ " in the conclusion plus "true for $n = 1$ " and "true for (all) n " is sufficient. For the last statement allow "true for n ", "true for \mathbb{Z}^+ ", "true for \mathbb{N} " and condone "true for \mathbb{Z} ", "true for integers", "true for integers after 1" or similar but do not allow "true for all $n \in \mathbb{R}$ " or just "true". Accept surrogates for "true" such as "correct for"/"it works for" etc. Requires previous 3 marks. Note that 01111 can only be awarded if the B mark was withheld for insufficient indication of substitution. If the base case work is omitted or wrong in any other way then 01110 is the maximum available.	A1 (5)
	Note that is valid to e.g., assume true for $n = k + 1$ and show true for $n = k + 2$:	(3)
	$ \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^{k+2} = \begin{pmatrix} 1-3(k+1) & 9(k+1) \\ -(k+1) & 3(k+1)+1 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} -3k-2 & 9k+9 \\ -k-1 & 3k+4 \end{pmatrix} \begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix} $	
	$ = \begin{pmatrix} 6k+4-9k-9 & -27k-18+36k+36\\ 2k+2-3k-4 & -9k-9+12k+16 \end{pmatrix} = \begin{pmatrix} -3k-5 & 9k+18\\ -k-2 & 3k+7 \end{pmatrix} = \begin{pmatrix} 1-3(k+2) & 9(k+2)\\ -(k+2) & 3(k+2)+1 \end{pmatrix} $	
	Use Review for any such approaches you are not sure about.	

FP1_2025_01_MS

Question Number	Scheme/Notes	
8(ii)	$u_1 = 1$ $u_2 = 4$ $u_{n+2} = 6u_{n+1} - 9u_n$ $n \ge 1 \implies u_n = 3^{n-2} (n+2)$	
	$n = 1 \Longrightarrow u_1 = 3^{-1} (2+1) = 1, n = 2 \Longrightarrow u_2 = 3^0 (2+2) = 4$	
	Obtains $u_1 = 1$ and $u_2 = 4$ from $u_n = 3^{n-2} (n+2)$ with some substitution seen for both	B1
	cases although it may be minimal. Look for any numerical expressions that give 1 and 4. No requirement to say "true" (oe) yet. Ignore work for <i>u</i> ₃ and beyond	
	{Assume true for $n = k$ and $n = k + 1$:} $u_k = 3^{k-2} (k+2)$ and $u_{k+1} = 3^{k-1} (k+3)$	
	$u_{k+2} = 6u_{k+1} - 9u_k = 6 \times 3^{k-1} (k+3) - 9 \times 3^{k-2} (k+2)$	
	Attempts u_k and u_{k+1} using $u_n = 3^{n-2} (n+2)$ and proceeds to attempt to use	M1
	$= 6 \times 3^{k} + 2k \times 3^{k} - 2 \times 3^{k} - k \times 3^{k} \text{ or e.g.} 2 \times 3^{k} (k+3) - 3^{k} (k+2)$	
	Obtains an expression where all terms are multiples of 3^k . Requires previous mark	dM1
	$\left\{=4 \times 3^{k} + k \times 3^{k} = 3^{k} (k+4)\right\} = 3^{(k+2)-2} ((k+2)+2) \text{ or } 3^{k+2-2} (k+2+2)$	
	Reaches a correct expression in terms of $k + 2$ with no errors. Meet in the middle approaches must be convincing.	A1
	If the result is true for $n = k$ and $n = k + 1$ then shown true for $n = k + 2$. As the result has been shown to be true for $n = 1$ and $n = 2$, then result is true for (all) n . Correct conclusion/narrative. Please consider the narrative and conclusion together. Allow poor phrasing if the intention is clear. All the elements in bold should be satisfied. "Assume $n = k$ and $n = k + 1$ " in the narrative followed by "true for $n = k + 2$ " in the conclusion plus "true for $n = 1$ and $n = 2$ " and "true for (all) n " or "true for $n = k + 2$ " in the conclusion plus "true for $n = 1$ and $n = 2$ " and "true for (all) n " or "true for $n = k + 2$ " in the conclusion plus "true for $n = 1$ and $n = 2$ " and "true for (all) n " or "true for $n \in \mathbb{Z}^+$ " is sufficient. For the last statement allow "true for n ", "true for \mathbb{Z}^+ ", "true for \mathbb{N} " and condone "true for \mathbb{Z} ", "true for integers", "true for integers after 1" etc. but do not allow "true for all $n \in \mathbb{R}$ " or just "true". Accept surrogates for "true" such as "correct for"/"it works for" etc. Requires previous 3 marks. Note that 01111 can only be awarded if the B mark was withheld for insufficient indication of substitution. If just " $u_1 = 1$, $u_2 = 4$ " is seen this is not sufficient evidence of any attempt to substitute and so the maximum score could only be 01110. The same applies if there are any errors in substitution. However e.g., just e.g., "when $n = 1$, $u_1 = 1$, when $n = 2$, $u_2 = 4$ " can score 01111 since this implies an attempt to verify the values and no errors are seen.	A1
		(5)
		Total 10
	See overleaf for approaches that assume true for $n = k - 1$ and $n = k$ and show true for $n = k + 1$	

	FP1_2025	_01_MS
8(ii)	Note that is valid to e.g., assume true for $n = k - 1$ and $n = k$ and show true for	
	n = k + 1:	
	$n = 1 \Longrightarrow u_1 = 3^{-1} (2+1) = 1, n = 2 \Longrightarrow u_2 = 3^0 (2+2) = 4$	
	$u_{k-1} = 3^{k-3} (k+1)$ $u_k = 3^{k-2} (k+2)$	
	$u_{k+1} = 6u_k - 9u_{k-1} = 6 \times 3^{k-2} (k+2) - 9 \times 3^{k-3} (k+1)$	
	$= 2 \times 3^{k-1} (k+2) - 3^{k-1} (k+1) \text{ or e.g., } 2k \times 3^{k-1} + 4 \times 3^{k-1} - k \times 3^{k-1} - 3^{k-1}$	
	$= k \times 3^{k-1} + 3 \times 3^{k-1} = 3^{k-1} (k+3) = 3^{(k+1)-2} ((k+1)+2) \text{ or } 3^{k+1-2} (k+1+2)$	
	B1: As main scheme	
	M1: Attempts u_{k-1} and u_k using $u_n = 3^{n-2}(n+2)$ and proceeds to attempt to use	
	recurrence relation to obtain u_{k+1} in terms of k	
	dM1: Obtains an expression where all terms are multiples of 3^{k-1} . Requires previous	
	mark	
	A1: Reaches a correct expression in terms of $k + 1$ with no errors.	
	A1: If result is true for $n = k - 1$ and $n = k$ then shown true for $n = k + 1$. As the	
	result has been shown to be true for $n = 1$ and $n = 2$, then result is true for (all) n .	
	See main scheme for guidance on the last mark.	
	Use Review for any similar approaches you are not sure about.	

Question	Scheme	FP1_2025_0 Notes	1_MS Marks
9(a)	$v^2 = \frac{1}{r} r P\left(\frac{t^2}{r}, \frac{t}{r}\right) \rightarrow v = \frac{1}{r} \sqrt{r} \rightarrow \frac{dy}{r} = \frac{1}{r} = \frac{1}{r}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} \left\{ = \frac{1}{\sqrt{2}} \right\} \text{ or } r = \frac{t^2}{\sqrt{2}} v = \frac{t}{\sqrt{2}} \xrightarrow{dy} = \frac{1}{4} \left\{ = \frac{1}{\sqrt{2}} \right\}$	
	$y = 2^{x}, T\left(\frac{8}{4}, 4\right) \xrightarrow{y} y = \sqrt{2} \sqrt{x} \xrightarrow{y} dx = 2\sqrt{2}\sqrt{x}$	$4\sqrt{x} 4\sqrt{\frac{t^2}{8}} t \int \text{or} x = 8, y = 4 \text{d}x \frac{2}{8}t t f$	
	or $2y \frac{dy}{dx} = \frac{1}{2} \Rightarrow \frac{dy}{dx} = \frac{1}{4y} = \frac{1}{4\left(\frac{t}{4}\right)} \left\{ = \frac{1}{t} \right\}$ or x	$= 2y^{2} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = 4y \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4y} = \frac{1}{4\left(\frac{t}{4}\right)} \left\{ = \frac{1}{t} \right\}$	B1
	Correct $\frac{dy}{dx}$ in terms of <i>t</i> . Could be unsimplified. Accept just " $\frac{dy}{dx}$ or $m = \frac{1}{t}$ "		
	$y - \frac{t}{4} = \frac{1}{t} \left(x - \frac{t^2}{8} \right)$ or $\frac{t}{4} = \frac{1}{t} \left(\frac{t^2}{8} \right) x + c \Longrightarrow c = \dots \left\{ \frac{t}{8} \right\}$	Correct straight line method with an unchanged gradient in terms of t. Condone late substitution of x/y into gradient if initial gradient not in terms of t (the first two marks are then accessible and A1* is possible)	M1
	e.g., $8ty - 2t^2 = 8x - t^2$ or $8yt = 8x + t^2$ or $y = \frac{1}{t}x + \frac{t}{8}$ $\Rightarrow 8yt - 8x = t^2 *$	Obtains the answer via intermediate line and no errors. Accept answer with t^2 on one side and 8ty-8x or $8(yt-x)$ or $8(ty-x)$ on the other (these 2 terms in either order). Requires both previous marks	A1*
		Requires both previous marks.	(3)
(b)	$x = 0 \Longrightarrow 8yt = t^2 \Longrightarrow y = \frac{t}{8} \left\{ Q_y = \frac{t}{16} \right\}$	Correct <i>y</i> coordinate of <i>A</i> Could be unsimplified.	B1 (M1 on ePen)
	{Midpoint of AP:} $\left(\frac{0 + \frac{t^2}{8}}{2}, \frac{\frac{t}{8} + \frac{t}{4}}{2}\right) \left\{ = \left(\frac{t^2}{16}, \frac{3t}{16}\right) \right\}$	Finds midpoint of <i>AP</i> using a fully correct method for their <i>A</i> which is of the form (0, f(t)) May be given as x =, y =	M1
	$ \{ \text{equation of } l_2 : \} y - "\frac{3t}{16}" = -t \left(x - "\frac{t^2}{16}" \right) $ or $y = -tx + c \Rightarrow "\frac{3t}{16}" = -t \left("\frac{t^2}{16}" \right) + c \Rightarrow c = \dots \left\{ \frac{3t + t^3}{16} \right\} $	Forms the equation of the perpendicular bisector of AP correct for their midpoint of AP and with gradient $-t$ (oe). Not dependent but the coordinates of their midpoint must both be functions of t	M1
	$y = \frac{t}{16} \Rightarrow \frac{t}{16} - \frac{3t}{16} = -tx + \frac{t^3}{16} \Rightarrow x = \frac{2+t^2}{16} \Rightarrow 2+256y^2 = 16x$ or e.g., $\frac{t}{16} = -tx + \frac{3t+t^3}{16} \Rightarrow 1 = -16x + 3 + t^2 \Rightarrow -2 = -16x + 256y^2$ $y - 3y = -16y\left(x - \frac{256y^2}{16}\right) \Rightarrow -2 = -16\left(x - \frac{256y^2}{16}\right) \ \{\Rightarrow -2 = -16x + 256y^2\}$ Any correct 3 term equation (may be factorised) with t eliminated		A1
	$y^{2} = \frac{1}{16}$ Correct equation in the correct form w $y^{2} = 0.0625x - 0.0078125$ or equivalent e.g., $-\frac{2}{256} + \frac{16}{256}x = y^{2}$ and isw if subse	$x - \frac{1}{128}$ with y^2 on its own on one side. Allow a fractions for α and β in $y^2 = \alpha x + \beta$ equent factorisation/multiplication etc.	A1
			(5) Total 8
			I ULAL O