Pearson Edexcel A Level Mathematics 9MA0

Mechanics – Further Kinematics

Time allowed: 45 minutes

School: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	9	
2	6	
3	12	
4	11	
5	12	
Total:	50	

How I can achieve better:

- •
- •
- •

1. The position of a particle is ${\bf r}$ metres. Initially ${\bf r}={\bf i}$.	
The velocity of the particle at time t seconds is v m/s where $\mathbf{v} = t\mathbf{i} + t$	$3t^2$ j .
(a) Find \mathbf{r} in terms of t .	[3]
(b) Find the acceleration of the particle when $t = 4$.	[4]
(c) Find the position of the particle when it is 1 m from the x-axis.	[2]
	Total: 9

2.	The position, \mathbf{r} , of a planet orbiting a star at time t is given by $\mathbf{r} = \begin{pmatrix} \cos(2t) \\ \sin(2t) \end{pmatrix}$.	
	(a) Find the velocity \mathbf{v} and acceleration \mathbf{a} of the planet in terms of t .	[3]
	(b) Show that $\mathbf{a} = -4\mathbf{r}$.	[1]
	(c) Sketch the trajectory of the particle and draw arrows showing its velocity and acceleration when $t=0$.	[2]
	,	Total: 6

3. A ball falling vertically through viscous fluid is subject to a drag force of magnitude k		kv N, where
	v m/s is the speed of the ball at time t seconds. The mass of the ball is 1 kg.	
	(a) Draw a force diagram showing the forces on the ball.	[2]
	(b) Find an expression for v when the ball is in equilibrium.	[2]
	(c) Explain why $\frac{\mathrm{d}v}{\mathrm{d}t} = g - kv$	[3]
	(d) Show, by substitution, that satisfies this equation in part (c).	[3]
	(e) Explain why this solution agrees with your answer to part (b).	[1]
	(f) Describe one limitation of this model.	[1]
		Total: 12

[2]

[4]

[5]

11

4.	A car travels along a long, straight road for one hour, starting from rest.	
	After t hours, its acceleration is $a \text{ km/h}^2$, where $a = 180 - 360t$.	
	(a) Find the speed of the car, in km/h in terms of t .	
	The speed limit is 40 km/h .	
	(b) Find the range of times during which the car is breaking the speed limit.	
	Give your answer in minutes.	
	(c) Find the average speed of the car over the whole journey.	
		Total

5. At time t seconds, a 2 kg particle experiences a force ${\bf F}$ N, where

$$\mathbf{F} = \binom{8}{4}t + \binom{6}{-12}t^2.$$

(4) (-12)	
(a) Find the acceleration of the particle at time t seconds.	[3]
The particle is initially at rest at the origin.	
(b) Find the position of the particle at time t seconds.	[6]
(c) Find the particle's velocity when $t = 1$.	[3]
	Total: 12

