Pearson Edexcel A Level Mathematics 9MA0

 ${\bf Mechanics-Application~of~Kinematcs}$

Time allowed: 45 minutes

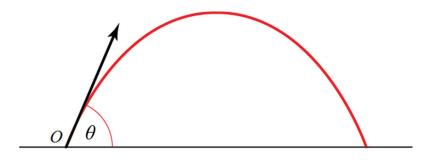
School: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	12	
2	16	
3	8	
4	14	
Total:	50	

How I can achieve better:

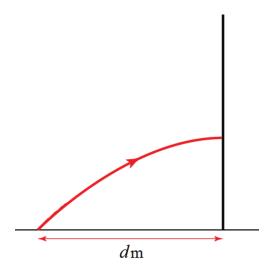

- •
- •
- •

[4]

[5]

1. A ball is launched from the origin with speed 1 m/s. Its velocity vector makes an angle θ above the horizontal. It travels over flat ground and is modelled as a particle moving freely under gravity. (In this question, take $g = 10 \text{ m/s}^2$)

- (a) Find the horizontal and vertical displacements of the particle at time t seconds. You should give your answer in terms of θ and t.
- (b) Show that the horizontal distance travelled by the particle before it hits the ground is $\frac{\sin(2\theta)}{10}$.
- (c) Find the value θ for which the horizontal distance travelled is a maximum. [2]
- (d) Describe one limitation of this model. [1]


Total: 12

(Q1 continued))		

2. A ball, modelled as a particle moving freely under gravity, is launched at 2 m/s from the origin at angle 45° above the horizontal. (In this question, take $g = 10 \text{ m/s}^2$)

(a) Find the coordinates of the particle when it is at its maximum height.

[10]

On another occasion, the projectile is again is launched at 2 m/s from the origin at angle 45° above the horizontal. It travels a horizontal distance d m before hitting a vertical wall and then falling straight to the ground.

(b) Find the maximum height attained if d = 0.1. Give your answer in cm.

[5]

[1]

(c) Describe a possible limitation of this model.

Total: 16

(Q2 continued \dots)			

[8]

In this question, take $g=9.8\mathrm{m/s^2})$	·		. 2	2 m above its laur	
	In this questic	on, take $g = 9.8$	m/s^2)		

1.	An archer shoots an arrow at 10 m/s from the origin and hits a target at $(10, -5) \text{ m}$. The initial	
	velocity of the arrow is at an angle θ above the horizontal. The arrow is modelled as a particle	
	moving freely under gravity. (In this question, take $g = 10 \text{ m/s}^2$.)	
	(a) Show that [11]
	$(\tan(\theta) - 1)^2 = 1.$	
	(b) Find the possible values of θ .]
	Total: 1	1

